We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Miniaturized Device Monitors Blood Metabolites in ICU

By HospiMedica International staff writers
Posted on 03 Nov 2015
Print article
Image: The prototype microfluidic metabolite device (Photo courtesy of EPFL).
Image: The prototype microfluidic metabolite device (Photo courtesy of EPFL).
A miniaturized microfluidic device could allow healthcare workers to monitor key metabolites in real time in intensive care units (ICUs).

Developed by researchers at Ecole Polytechnique Fédérale de Lausanne (EPFL; Switzerland) the device consists of a little black box with embedded biosensors that is attached to a patient’s drainage tube. The prototype device, fabricated using a three dimensional (3-D) printer, can currently monitor real time levels of glucose, lactate, bilirubin, calcium, and potassium. Eventually, according to the researchers, up to 40 different molecules could be monitored using the device, thus reducing the need for additional diagnostic devices.

The prototype includes a fully integrated hardware platform on a printed circuit board (PCB) that connects the biosensors to a read-out on the front end, as well as wireless connectivity via a Bluetooth module for data transmission to a mobile Android interface for visualization. Preliminary in vitro tests on calibration for the five key metabolites of interest were conducted successfully on rodents. A study describing the device and the results was presented at the annual Biomedical Circuits and Systems Conference (BioCAS), held during October 2015 in Atlanta (GA, USA).

“We embedded biosensors in it to measure several different substances in the blood or blood serum along with an array of electronics to transmit the results in real time to a tablet via Bluetooth,” said study presenter Sandro Carrara, PhD, a scientist at the EPFL integrated systems laboratory (LSI). “Nowadays, several of these levels are measured periodically. But in some cases, any change in level calls for an immediate response, something that is not possible with the existing systems.”

Microfluidics intersects engineering, physics, chemistry, biochemistry, nanotechnology, and biotechnology, in order to process low volumes of fluid for multiplexing, automation, and high-throughput screening. Behavior, control, and manipulation of the fluids is geometrically constrained to a small, typically submillimeter, scale using passive fluid control techniques, such as capillary forces. Often processes which are normally carried out in a lab are miniaturized on a single chip in order to enhance efficiency and mobility, as well as reducing sample and reagent volumes.

Related Links:

Ecole Polytechnique Fédérale de Lausanne


Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Diagnostic Ultrasound System
MS1700C
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.