We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Whales Could Hold the Answer for Synthetic Blood

By HospiMedica International staff writers
Posted on 07 Oct 2015
Print article
Image: Myoglobin (red) includes a pocket that is used to store heme (green) (Photo courtesy of Jeff Fitlow/Rice University).
Image: Myoglobin (red) includes a pocket that is used to store heme (green) (Photo courtesy of Jeff Fitlow/Rice University).
Ultra-stable proteins that allow deep-diving whales to remain active while holding their breath could help create lifesaving synthetic blood, claims a new study.

Researchers at Rice University (Rice, Houston, TX, USA) and the University of Washington (Seattle, USA) conducted a study comparing naturally occurring mammalian myoglobins (Mb) from humans, whales, and other deep-diving mammals. They found that all forms had a common characteristic shape that included a “heme pocket” (much like the pocket of a baseball glove) that traps and releases oxygen. The amount of fully active Mb expressed was directly and strongly dependent on the stability of the heme-free form of Mb, called apomyoglobin (apoMb).

But while the overall shape of Mb in different species is similar, including the shape of their heme pockets, subtle differences in their amino acid sequences causes the more stable myoglobins to better retain their shapes. This underlying stability, however, only becomes apparent when studying the heme-free, apoMb version of the protein. In the study, the researchers confirmed quantitatively that all deep diving mammals have apoMb up to 60 times more stable than human apoMb.

The researchers also systematically analyzed the genes and available information for all mammalian Mbs, including those from 250 deep-diving species, and found that those from aquatic mammals had large positive surface charges compared with those from land animals. They hypothesized that the charge differences allowed aquatic species to pack more Mb into their muscle cells than humans. Finally, the researchers confirmed that the stability of apoMb is directly correlated with expression levels; while very little human Mb is expressed, whales can express 10- to 20-fold higher amounts.

According to the researchers, the results could be used to engineer a strain of bacteria that could generate massive quantities of apoMb that could then be incorporated into synthetic blood for use in transfusions. Since hospitals and trauma specialists currently rely on donated whole blood, which is often in short supply and has a limited storage life, success could mean many more lives saved. The study was published in the September 2015 issue of the Journal of Biological Chemistry.

“Whales and other deep-diving marine mammals can ‘download’ oxygen directly into their skeletal muscles and stay active even when they are holding their breath,” said biochemist Prof. John Olson, PhD, of Rice University. “The reason whale meat is so dark is that it’s filled with myoglobin that is capable of holding oxygen. But when the myoglobin is newly made, it does not yet contain heme. We found that the stability of heme-free myoglobin is the key factor that allows cells to produce high amounts of myoglobin.”

Related Links:

Rice University
University of Washington


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
New
Phototherapy Eye Protector
EyeMax2
New
Hospital Bed
Alphalite

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.