We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Noninvasive Double Microbubble Delivery Approach Marks Breakthrough in Brain Cancer Treatment

By HospiMedica International staff writers
Posted on 26 Jun 2025

Glioblastoma (GBM) is an extremely aggressive and invasive form of primary brain cancer, widely regarded as incurable. More...

As a “cold tumor,” GBM possesses a tumor microenvironment that hinders immune activity and reduces responsiveness to treatment. While some therapies can slow down tumor growth and relieve symptoms, they fail to stop the disease’s inevitable advancement. GBM has a recurrence rate exceeding 90% within six to nine months following initial treatment. When the tumor returns, it is typically more resistant to interventions such as chemotherapy and radiation, ultimately leading to patient death. Now, researchers have uncovered a potentially groundbreaking method to address GBM, the deadliest brain cancer type for which no curative therapies currently exist.

Researchers at VCU Massey Comprehensive Cancer Center (Richmond, VA, USA) have developed a novel molecule capable of delivering a dual treatment effect—cytotoxicity and immunotoxicity—to eliminate tumors while activating the immune system to help prevent GBM recurrence. This approach involves a “Fusion Superkine” (FSK), a molecule combining two therapeutic cytokines in one construct. The researchers implemented a dual-targeting treatment strategy by designing the FSK using two distinct components: a cytotoxic element and an immune-regulating molecule. Administered intravenously, the FSK selectively delivers two immune-stimulating cytokines—secreted proteins that regulate the activity and development of numerous cell types, including immune cells. One cytokine initiates targeted tumor cell destruction, while the other modulates the immune response, collectively attacking the traits that make GBM particularly difficult to manage.

To achieve this, the researchers engineered a unique FSK by merging the tumor-killing properties of a next-generation version of melanoma differentiation associated gene-7/Interleukin-24, known as IL-24S (Superkine), with improved stability, secretion, and biological activity, and the immune-stimulating function of IL-15, to optimize the therapeutic effect. In a mouse model of GBM with a functioning immune system, the FSK led to significantly greater tumor shrinkage and increased survival compared to treatment with IL-24S or IL-15 alone. The treatment not only destroyed GBM cells but also promoted the infiltration of T cells, dendritic cells (DCs), macrophages, and NK cells into the tumor, key immune cells that collectively work to destroy cancerous tissue. To deliver the FSK effectively, researchers used a type 5 adenovirus (Ad.5) engineered to express the fusion protein and then created a new delivery technique combining focused ultrasound (FUS) and microbubbles (MBs), known as the FUS-DMB strategy, to bypass the blood-brain barrier (BBB) and improve the precision of systemic viral delivery.

The BBB, composed of tight junctions in endothelial cells, prevents most substances from entering the brain, limiting the effectiveness of conventional chemotherapy and cancer treatments. However, the FUS-DMB method allows the stealthy delivery of the Ad.5-FSK through the bloodstream while temporarily and safely opening the BBB, enabling the FSK to reach the tumor and exert its therapeutic effects. This dual microbubble-based strategy also holds promise for delivering viruses and genetic treatments to other types of tumors. The FUS-DMB platform enhances the penetration of therapeutic molecules into designated tissues beyond the brain, resulting in improved molecular drug delivery and superior treatment outcomes. Further studies are planned to evaluate the application of FSK in clinical tumor samples and eventually in human patients.

“Our novel systemic therapy for brain cancer incorporates a unique immune-therapeutic agent, a ‘Fusion Superkine’ (FSK), and an innovative viral systemic delivery approach, focused ultrasound double microbubble (FUS-DMB), which permits safe and effective targeted delivery through the blood-brain barrier (BBB) into the brain,” said one of the study’s senior authors, Paul B. Fisher, MPh, Ph.D., FNAI. “The bottom line is that in the future we may be able to treat both primary brain tumors (glioblastoma) and secondary brain tumors (arising from metastases outside of the brain) non-invasively without surgery.”

Related Links:
VCU Massey Comprehensive Cancer Center


Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Antimicrobial Mat
MULTIMAT
New
Mammography System (Analog)
MAM VENUS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: For the first time, a fluorescent-guided nerve imaging agent has shown promise for use in humans (Photo courtesy of VUMC)

Fluorescent Imaging Agent ‘Lights Up’ Nerves for Better Visualization During Surgery

Surgical nerve injury is a significant concern in head and neck surgeries, where nerves are at risk of being inadvertently damaged during procedures. Such injuries can lead to complications that may impact... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: A research collaboration aims to further advance findings in human genomics research in cardiovascular diseases (Photo courtesy of 123RF)

Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies

A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.