We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





New Model Detects Long-COVID’s Effects Using Simple, 2D Chest X-Rays

By HospiMedica International staff writers
Posted on 03 Nov 2022
Print article
Image: The advanced model can detect lung damage in long-COVID patients and classify patient subtypes (Photo courtesy of University of Iowa)
Image: The advanced model can detect lung damage in long-COVID patients and classify patient subtypes (Photo courtesy of University of Iowa)

For patients dealing with lingering respiratory symptoms from the novel coronavirus, a chest X-ray can reveal only so much. The two-dimensional (2D) scans simply cannot distinguish compromised lung function. For that diagnosis, a more expensive, three-dimensional (3D) technique called a CT scan is necessary. Yet many medical clinics do not have CT scanning equipment, leaving so-called long-COVID patients with little information about their lung function. But that may change. Researchers have developed what is called a contrastive learning model that “learns” from composite 2D images constructed from 3D CT images to detect compromised lung function in long-COVID patients. Another technique, called transfer learning, then conveys lung diagnostic information from a CT scan to a chest X-ray, thus allowing chest X-ray equipment to detect abnormalities the same as if those patients had used a CT scan.

In the study, the researchers at the University of Iowa (Iowa City, IA, USA) showed how their contrastive learning model could be applied to detect small airways disease, which is an early stage of compromised lung function in long-COVID patients. Of the long-COVID patients, the models were advanced enough to distinguish the severity of the compromised lung function, separating those with small airways disease from those with more advanced respiratory issues.

The researchers based their modeling on CT scans of 100 people who were infected with the original COVID strain and went for diagnosis for breathing problems between June and December 2020. Many of these long-COVID patients had small airways disease, which affects a network of more than 10,000 tubes at the nexus in the lung where oxygenated air mixes with blood to be carried throughout the body. People with small airways disease have many of these vessels constricted, thus limiting the oxygen-blood exchange in the lungs, and impeding breathing overall.

The researchers collected data points at two intervals in the CT lung scans - when the patient inhaled and when the patient exhaled. The researchers compared their results with a control group that had not contracted the virus as they created the contrastive learning model. The researchers also advanced the model so it could separate patients with small airways disease from those with more advanced complications, such as emphysema. The researchers note the study is limited, in part because the sample size is small, and the patients are from a single medical facility. A larger sample size, they write, may uncover more variations in lung function stemming from long COVID.

“The study demonstrated in an independent way that patients with post-COVID have two types of lung injuries (small airway disease and lung parenchyma fibrosis/inflammation) that are persistent after having recovered from their initial SARS CoV-2 infection,” said Alejandro Comellas, clinical professor of internal medicine–pulmonary, critical care, and occupational medicine, and a co-author on this study.

“The new element to the model is taking information from 3D CT scans showing lung volume and transferring that information to a model that will show these same characteristics in 2D images,” said Ching-Long Lin, Edward M. Mielnik and Samuel R. Harding professor and chair of the Department of Mechanical Engineering in the College of Engineering at Iowa. “Clinicians would be able to use chest X-rays to detect these outcomes. That’s the bigger perspective.”

“Chest X-rays are accessible, while CT scans are more expensive and not as accessible,” Lin added. “Our model can be further improved, and I believe there is potential for it to be used at all clinics without having to buy expensive imaging equipment, such as CT scanners.”

Related Links:
University of Iowa 

Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
LED Surgical Light
Convelar 1670 LED+/1675 LED+/1677 LED+
New
Surgeon Stool
MR4504

Print article

Channels

Critical Care

view channel
Image: The Frontier X Plus ECG wearable has received U.S. FDA 510(k) clearance (Photo courtesy of Fourth Frontier)

AI-Powered Wearable ECG Monitor to Improve Early Detection of Cardiovascular Disease

Atrial fibrillation is recognized as a global health epidemic and serves as a key indicator of increased morbidity and mortality across all age groups. The incidence and prevalence of cardiovascular disease... Read more

Surgical Techniques

view channel
Image: The Anovo robotic surgical platform features miniature humanoid-shaped robotic arms (Photo courtesy of Momentis Surgical)

Second Generation Robotic Platform Introduces Haptic Feedback and Dual-Mode Articulation

A second-generation surgical platform featuring miniature humanoid-shaped robotic arms now comes with a suite of upgrades to enhance surgeon experience and ease of use. Momentis Surgical’s (Tel Aviv,... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.