We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App





Mathematical Model Could Help Clinicians to Safely Allow Two COVID-19 Patients to Share Single Ventilator

By HospiMedica International staff writers
Posted on 29 Jan 2021
A team of engineers have developed a mathematical model that could help clinicians to safely allow two COVID-19 patients to share a single ventilator.

Members of the University of Bath’s Centre for Therapeutic Innovation and Centre for Power Transmission and Motion Control (Bath, England) have published a first-of-its-kind research paper on dual-patient ventilation (DPV), following their work which began during the first wave of the SARS-CoV-2 virus in March 2020. More...
DPV presents several challenges: accurate identification of patients' lung characteristics over time; close matching of patients suitable to be ventilated together, and the risk of lung damage if airflow is not safely maintained. The BathRC model enables doctors to calculate the amount of restriction required to safely ventilate two patients using one ventilator.

As a practice, DPV is strongly advised against by healthcare bodies given the potential for lung damage, and the team stresses that their findings should only be used in extreme situations where patients outnumber available equipment. No testing has been carried out on patients, instead the research so far has taken place using artificial lungs, normally used to calibrate ventilators. The model equates the ventilator circuit to an electrical circuit with resistance and compliance considered equivalent to electrical resistance and capacitance; this enabled a simple calculator to be created.

While DPV has been previously attempted during the COVID-19 pandemic, the paper is the first to provide clinicians with the calculations needed to safely ventilate two patients with one machine. The model is able to predict tidal lung volumes accurate to within 4%. In addition to further testing, some hurdles remain before clinicians could safely attempt dual-patient ventilation using the BathRC model. The team plans to publish further research soon into how to create an adjustable airflow restrictor.

"We are not advocating dual-patient ventilation, but in extreme situations in parts of the world, it may be the only option available as a last resort. The COVID-19 crisis presents a potential risk of hospitals running short of ventilators, so it is important we explore contingencies, such as how to maximize capacity," said Professor Richie Gill, Co-Vice Chair of the Centre for Therapeutic Innovation and the project's principal investigator. "This isn't something we'd envisage being needed for critical-care patients. However, one of the issues with COVID is that people can need ventilation for several weeks. If you could ventilate two recovering patients with one machine it could free up another for someone in critical need."

Related Links:
University of Bath


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Lateral Lumbar Interbody Spacer
CALIBER-L
New
Bipolar Coagulation Generator
Aesculap
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The skin-like sensor monitors internal and external body movement, and electrical signals (Photo courtesy of Huanyu “Larry” Cheng and Jennifer M. McCann)

Skin-Like Sensor Monitors Vital Signs and Tracks Healing After Surgery

Medical conditions such as bladder control issues and the need for monitoring vital signs after surgery require precise, long-term tracking to improve patient outcomes. These conditions can be challenging... Read more

Surgical Techniques

view channel
Image: For the first time, a fluorescent-guided nerve imaging agent has shown promise for use in humans (Photo courtesy of VUMC)

Fluorescent Imaging Agent ‘Lights Up’ Nerves for Better Visualization During Surgery

Surgical nerve injury is a significant concern in head and neck surgeries, where nerves are at risk of being inadvertently damaged during procedures. Such injuries can lead to complications that may impact... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: A research collaboration aims to further advance findings in human genomics research in cardiovascular diseases (Photo courtesy of 123RF)

Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies

A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.