We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





New AI Platform Detects COVID-19 on Chest X-Rays with Accuracy and Speed

By HospiMedica International staff writers
Posted on 25 Nov 2020
Print article
Image: Generated heatmaps appropriately highlighted abnormalities in the lung fields in those images accurately labeled as COVID-19 positive (A-C) in contrast to images which were accurately labeled as negative for COVID-19 (D). Intensity of colors on the heatmap correspond to features of the image that are important for prediction of COVID-19 positivity (Photo courtesy of Northwestern University)
Image: Generated heatmaps appropriately highlighted abnormalities in the lung fields in those images accurately labeled as COVID-19 positive (A-C) in contrast to images which were accurately labeled as negative for COVID-19 (D). Intensity of colors on the heatmap correspond to features of the image that are important for prediction of COVID-19 positivity (Photo courtesy of Northwestern University)
A new artificial intelligence (AI) platform that detects COVID-19 by analyzing X-ray images of the lungs is about 10 times faster as well as 1-6% more accurate than individual specialized radiologists.

Called DeepCOVID-XR, the machine-learning algorithm developed by researchers at the Northwestern University (Evanston, IL, USA) outperformed a team of specialized thoracic radiologists - spotting COVID-19 in X-rays about 10 times faster and 1-6% more accurately. The researchers believe physicians could use the AI system to rapidly screen patients who are admitted into hospitals for reasons other than COVID-19. Faster, earlier detection of the highly contagious virus could potentially protect health care workers and other patients by triggering the positive patient to isolate sooner. The researchers also believe the algorithm could potentially flag patients for isolation and testing who are not otherwise under investigation for COVID-19.

To develop, train and test the new algorithm, the researchers used 17,002 chest X-ray images - the largest published clinical dataset of chest X-rays from the COVID-19 era used to train an AI system. The team then tested DeepCOVID-XR against five experienced cardiothoracic fellowship-trained radiologists on 300 random test images. Each radiologist took approximately two-and-a-half to three-and-a-half hours to examine this set of images, whereas the AI system took about 18 minutes. The radiologists' accuracy ranged from 76-81%. DeepCOVID-XR performed slightly better at 82% accuracy. The researchers have made the algorithm publicly available with hopes that others can continue to train it with new data. Right now, DeepCOVID-XR is still in the research phase, but could potentially be used in the clinical setting in the future.

"We are not aiming to replace actual testing," said Northwestern's Aggelos Katsaggelos, an AI expert and senior author of the study. "X-rays are routine, safe and inexpensive. It would take seconds for our system to screen a patient and determine if that patient needs to be isolated."

"It could take hours or days to receive results from a COVID-19 test," said Dr. Ramsey Wehbe, a cardiologist and postdoctoral fellow in AI at the Northwestern Medicine Bluhm Cardiovascular Institute. "AI doesn't confirm whether or not someone has the virus. But if we can flag a patient with this algorithm, we could speed up triage before the test results come back."

Related Links:
Northwestern University

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Single-Use Instrumentation
FASTPAK
New
Pediatric Cart
UXGLA-9PEDS

Print article

Channels

Critical Care

view channel
Image: An in-situ curing strategy to develop a stretchable, semi-transparent, and durable GPE-TENG (Photo courtesy of Pandey et al. (2024), Chemical Engineering Journal; DOI: 10.1016/j.cej.2024.156650)

Gel-Based Stretchable Triboelectric Nanogenerators to Revolutionize Wearable Technology

Wearable technology, ranging from fitness trackers and smartwatches to medical sensors worn on the body, is revolutionizing our interaction with technology. As these devices gain in popularity, triboelectric... Read more

Surgical Techniques

view channel
Image: The first-ever surgery performed utilizing the MARS platform and Intuitive Da Vinci SP single-port robot (Photo courtesy of Levita Magnetics)

Revolutionary Robotic Surgery Combines Dual-System Technologies for Groundbreaking Prostate Procedure

In a pioneering advancement for robotic-assisted surgery, surgeons at UT Southwestern Medical Center (Dallas, TX, USA) have successfully performed the first-ever surgery utilizing two distinct systems... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.