We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App





Virus-Fighting Enzymes in Bacteria Could Lead to Development of Highly Effective Antiviral Drugs Against COVID-19

By HospiMedica International staff writers
Posted on 23 Sep 2020
Virus-fighting viperins, part of the human immune system, which were previously known to exist only in mammals, have now been found in bacteria that could lead to the development of highly effective antiviral drugs for the treatment of COVID-19. More...


A group of scientists at the Molecular Genetics Department at the Weizmann Institute of Science (Rehovot, Israel) has uncovered a gold mine of antiviral substances made by virus-fighting enzymes known as viperins. The molecules produced by the bacterial viperins are currently undergoing testing against human viruses such as the influenza virus and COVID-19.

Earlier studies conducted by the group as well as other scientists have revealed that bacteria have highly sophisticated immune systems, despite their microscopic size. In particular, they are equipped to fight off phages - viruses that infect bacteria. These differ from the kind that infect humans in their choice of targets, but they all consist of genetic material - DNA or RNA - that hijacks parts of the host’s replication machinery to make copies of themselves and spread.

The group of scientists have now found that some of these bacterial immune responses suggest evolutionary links to our own immune systems, and the present study in their lab shows the strongest evidence yet: They discovered that viperin antiviral enzymes - whose function in the human immune system was understood only two years ago - play a role in the immune system of bacteria.

In humans, viperin belongs to the innate immune system, the oldest part of the immune system in terms of evolution. It is produced when a signaling substance called interferon alerts the immune system to the presence of pathogenic viruses. The viperin then releases a special molecule that is able to act against a broad range of viruses with one simple rule: The molecule “mimics” nucleotides, bits of genetic material needed to replicate their genomes. But the viperin molecule is fake: It is missing a vital piece that enables the next nucleotide in the growing strand to attach. Once the faux-nucleotide is inserted into the replicating viral genome, replication comes to a halt and the virus dies.

This simplicity and broad action against many different viruses suggested viperins had been around for some time, but could they go back as far as our common ancestors with bacteria? The group used techniques that had been developed in their lab to detect bacterial sequences encoding possible viperins. They then showed that these viperins did, indeed, protect bacteria against phage infection. Based on the genetic sequences, the team was able to trace the evolutionary history of viperins. If the bacterial viperins prove effective against human viruses, then it may pave the way for the discovery of further molecules generated by bacterial immune systems that could be adopted as antiviral drugs for human diseases. Further studies are underway to determine which of the bacterial viperins could be best adapted to fighting human viruses, including, of course, COVID-19.

“As we did decades ago with antibiotics - antibacterial substances that were first discovered in fungi and bacteria - we might learn how to identify and adopt the antiviral strategies of organisms that have been fighting infection for hundreds of millions of years,” said Prof. Rotem Sorek from the Institute’s Molecular Genetics Department.

Related Links:
Weizmann Institute of Science


Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Half Apron
Demi
New
VTE Prevention System
Flowtron ACS900
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The skin-like sensor monitors internal and external body movement, and electrical signals (Photo courtesy of Huanyu “Larry” Cheng and Jennifer M. McCann)

Skin-Like Sensor Monitors Vital Signs and Tracks Healing After Surgery

Medical conditions such as bladder control issues and the need for monitoring vital signs after surgery require precise, long-term tracking to improve patient outcomes. These conditions can be challenging... Read more

Surgical Techniques

view channel
Image: For the first time, a fluorescent-guided nerve imaging agent has shown promise for use in humans (Photo courtesy of VUMC)

Fluorescent Imaging Agent ‘Lights Up’ Nerves for Better Visualization During Surgery

Surgical nerve injury is a significant concern in head and neck surgeries, where nerves are at risk of being inadvertently damaged during procedures. Such injuries can lead to complications that may impact... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: A research collaboration aims to further advance findings in human genomics research in cardiovascular diseases (Photo courtesy of 123RF)

Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies

A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.