We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




AR Surgical System Enables See-Through Spine Surgery

By HospiMedica International staff writers
Posted on 26 Apr 2018
Print article
Image: The XVS allows surgeons to see and navigate inside a patient’s body through skin and tissue, for easier, faster and safer surgeries (Photo courtesy of Augmedics).
Image: The XVS allows surgeons to see and navigate inside a patient’s body through skin and tissue, for easier, faster and safer surgeries (Photo courtesy of Augmedics).
Augmedics (Yoqneam, Israel), a developer of an augmented-reality (AR) surgical navigation system, has successfully completed its second cadaver study using its xvision-spine system (XVS) with surgeons from Johns Hopkins Hospital, as well as two surgeons from hospitals in Israel. During the study, the surgeons placed 120 pedicle screws in five separate cadavers with a screw placement accuracy of 96.7% when employing the combined Heary-Gertzbein grading scheme.

Augmedics’ XVS is an AR surgical navigation system designed to give surgeons “X-ray vision” during complex procedures. XVS allows surgeons to see and navigate inside a patient’s body through skin and tissue, for easier, faster and safer surgeries. The XVS system is comprised of a transparent near-eye-display headset and has all the elements of a traditional navigation system. It accurately determines the position of surgical tools in real-time and superimposes them on the patient's CT data. The navigation data is then projected onto the surgeons' retina using the transparent near-eye-display headset, allowing surgeons to simultaneously look at their patient and see the navigation data without averting their eyes to a remote screen.

XVS has the potential to be used in various procedures, with its first intended use in minimally invasive or open spine surgeries. The technology was designed to save time during surgery, increase precision in MISS and open spine surgeries, reduce radiation exposure, and reduce the number of unnecessary repeat operations and hospitalizations.

Dr. Timothy Witham, professor of neurological surgery and orthopedic surgery at the Johns Hopkins University School of Medicine, said, “Typically what we have to do during minimally-invasive spine surgery is we have to look away from where we’re working. But XVS has all the image-guided information directly in front of you in the goggles you’re wearing, while you’re placing the instrumentation.

“With XVS, I can actually see the details of the three-dimensional anatomy through the patient,” added Dr. Daniel Sciubba, professor of neurological surgery, oncology and orthopedic surgery at the Johns Hopkins University School of Medicine. “With its optics on-lay, it is lightweight, easy to use, and translucent, so you can see through the actual image.”

Related Links:
Augmedics

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Transducer Covers
Surgi Intraoperative Covers
New
X-ray Diagnostic System
FDX Visionary-A

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.