We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Machine Learning Shows Promise for Supporting Medical Decisions

By HospiMedica International staff writers
Posted on 01 Mar 2018
Print article
A number of studies presented at the 67th Annual Scientific Session of the American College of Cardiology (Washington, DC, USA) demonstrated how machine learning can be used to accurately predict clinical outcomes in patients with known or potential heart problems. The findings of these studies indicate that machine learning can usher in a new era in digital health care tools capable of enhancing healthcare delivery by aiding routine processes and helping physicians to assess the patients’ risk.

Clinical scoring systems and algorithms have been used in medical practice since a long time now, although there has recently been a visible increase in the application of machine learning to improve these tools. While traditional algorithms require all calculations to be pre-programmed, machine-learning algorithms deduce the optimal set of calculations by searching for patterns in large collections of patient data. New studies presented at ACC.18, which took place on March 10-12 in Orlando, USA, demonstrated how machine learning can be used to predict outcomes such as diagnosis, death or hospital readmission; improve upon standard risk assessment tools; elucidate factors that contribute to disease progression; or to advance personalized medicine by predicting a patient’s response to treatment.

For instance, in one study, researchers used machine learning to predict which patients would eventually be diagnosed with a heart attack after visiting a hospital emergency department for chest pain. Although chest pain is among the most common complaints in patients visiting the emergency department, only a fraction of such patients are ultimately diagnosed with a heart attack. In a pilot test, the algorithm was able to accurately predict a heart attack diagnosis 94% of the time in the validation data set. Researchers also ran the validation data through a standard clinical model (the hsTnT model, which incorporates only a patient’s age, sex and high-sensitivity troponin levels), which showed an accuracy of 88%. These results suggest that machine learning can offer a substantial improvement over current decision support tools.

“In a broad sense, machine-learning methods have been around for quite some time, but it’s just in the last few years that we have gained the large data sets and computational capabilities to use them for clinical applications,” said Daniel Lindholm, MD, PhD, postdoctoral research fellow at Uppsala University in Sweden and the study’s lead author. “I think that we will see more and more decision support systems based on machine learning. But even as machine learning can enhance medical practice, I do not think these algorithms will ultimately replace physicians but, rather, provide decision support based on the data at hand. Other things, such as empathy, human judgment and the patient-doctor relationship are crucial.”

Related Links:
American College of Cardiology
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Radiation Shielding
Oversize Thyroid Shield
New
Medical Magnifier
EX-06

Print article

Channels

Critical Care

view channel
Image: The small but powerful invention could soon make life in the NICU easier for the tiniest patients (Photo courtesy of Georgia Institute of Technology)

Wireless Pacifier Monitors Vitals of NICU Babies Without Need for Painful Blood Draws

Newborns require frequent monitoring of their vital signs, with electrolyte levels being one of the most important indicators of their health. Currently, the only method to monitor these levels is through... Read more

Surgical Techniques

view channel
Image: Bioresorbable, 3D-printed tracheobronchial splint device (Photo courtesy of Michigan Medicine)

First-Of-Its-Kind Bioresorbable Implant to Help Children with Rare Respiratory Disease

Tracheobronchomalacia is a rare, life-threatening condition in which the cartilage in the trachea or mainstem bronchi develops abnormally, causing the airway to collapse and making breathing difficult for children.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.