We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Canada to Develop New Isotope Production Methods

By HospiMedica International staff writers
Posted on 11 Mar 2013
An aging reactor and a worldwide looming shortage of medical isotopes has driven Canada to search for alternatives methods to manufacture technetium-99m (99mTc).

At the moment, Canada's only source of the isotope is the National Research Universal (NRU; Chalk River, Ontario, Canada) reactor at Chalk River Laboratories (CRL, Ontario, Canada), which produces about a third of the world's supply. More...
But the reactor has been plagued with safety and operational problems, leading to worldwide shortages, and its license is set to expire in 2016. Consequently, Canada is investing close to USD 21 million in three projects in western Canada that have demonstrated the ability to produce the key medical isotope without a nuclear reactor.

Two of the research institutes, the national laboratory for particle and nuclear physics (TRIUMF; Vancouver, BC, Canada) and the University of Alberta (Edmonton, Canada) are using cyclotron technology to produce the isotope, while the third, Prairie Isotope Production Enterprise (PIPE; Pinawa, MB, Canada), is using a linear accelerator.

In the cyclotron process, the machine bombards a target of molybdenum-100 with high-energy protons, converting some of its atoms to molybdenum-99 (Mo-99). Then chemical processing removes technetium-99 from the target, ready for use. The PIPE technology uses an electron accelerator rather than a nuclear reactor to make the Mo-99. The electron accelerator sprays electricity onto molybdenum metal, which produces the Mo-99 radioisotope. Next, a chemical process is used to fabricate the Tc-99m.

“The Harper Government is investing in Canadian expertise to help ensure new sources of supply for medical isotopes used in diagnosing various diseases, such as cancer and heart disease,” said Joe Oliver Canada’s natural resources minister. “We are investing in the work needed to attract private sector interest and to bring new technologies to market, and to help ensure that isotope production is on a sound commercial footing.”

Tc-99m is obtained from the decay of its parent isotope Mo-99 compounds that are packed into nuclear "generators" and distributed to hospitals, where nuclear medicine specialists can draw off the Tc-99m as needed for about a week. Tc-99m is used in 80% of nuclear medicine diagnostic procedures in Canada, and about 85% of all medical imaging procedures worldwide. It is currently made in reactors in Canada, the Netherlands, Belgium, France, Australia, and South Africa.

Related Links:

National Research Universal
TRIUMF
Prairie Isotope Production Enterprise



Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
Needle Guide Disposable Kit
Verza
New
Mattress System
Apollo Infant Dynamic
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The Minder Implant can record brain activity continuously for very long periods (Photo courtesy of Epiminder)

Implantable Device Continuously Monitors Brain Activity in Epileptic Patients

Epilepsy is one of the most prevalent and serious chronic neurological disorders, impacting around 52 million people globally. It is characterized by recurrent seizures, which are caused by abnormal electrical... Read more

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.