We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




New Model Predicts 10 Year Breast Cancer Risk

By HospiMedica International staff writers
Posted on 05 Sep 2023

Breast cancer screening is a vital tool against the deadly disease, yet it faces its share of challenges. More...

Although it reduces breast cancer-related deaths, it also has the potential to detect non-harmful tumors (overdiagnosis), leading to unnecessary treatments. This not only adversely affects some women but also drives up healthcare costs unnecessarily. 'Risk-based screening' is a strategy aimed at customizing screening approaches based on an individual's risk profile, aiming to maximize benefits and minimize drawbacks. Tailoring screening programs based on individual risks was recently identified as a way to refine screening strategies. Presently, most risk-based breast screening models estimate a woman's risk of being diagnosed with breast cancer. However, not all breast cancers are fatal, and the risk of diagnosis doesn't always align with the risk of death post-diagnosis. Now, researchers have devised a new model that accurately predicts a woman's likelihood of both developing and then succumbing to breast cancer within a decade.

The new model developed by a team of researchers at University of Oxford (Oxford, UK) predicts a woman's 10-year combined risk of breast cancer development and subsequent mortality. The aim is to identify women at the highest risk of deadly cancers in order to enhance the effectiveness of screening programs. Such high-risk individuals might be encouraged to initiate screening earlier, receive more frequent screenings, or undergo different types of imaging. This personalized strategy not only has the potential to reduce breast cancer fatalities but also avoid unnecessary screening for women with lower risk. Women with an elevated risk of deadly cancer could also be considered for preventive treatments against the development of breast cancer.

The research team explored four distinct modeling techniques to predict breast cancer mortality risk. Two followed conventional statistical methodologies, while the other two harnessed machine learning, a branch of artificial intelligence. All models incorporated identical data types, including age, weight, smoking history, family history of breast cancer, and hormone therapy (HRT) usage. The models underwent evaluation for their overall predictive accuracy, spanning various women's groups with diverse characteristics such as different age brackets and ethnic backgrounds. An approach called 'internal-external cross-validation' was employed. This method involves dividing the dataset into structurally distinct segments, based on factors like region and time frame, to assess the model's adaptability across different scenarios. The outcomes revealed that a statistical model constructed using 'competing risks regression' outperformed the rest. This model demonstrated the highest accuracy in predicting which women would develop and face breast cancer mortality within a 10-year span. The machine learning models displayed comparatively lower accuracy, particularly for diverse ethnic women's groups.

“This is an important new study which potentially offers a new approach to screening. Risk-based strategies could offer a better balance of benefits and harms in breast cancer screening, enabling more personalized information for women to help improve decision making,” said University of Oxford Professor Julia Hippisley-Cox. “Risk based approaches can also help make more efficient use of health service resources by targeting interventions to those most likely to benefit.”

Related Links:
University of Oxford 


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Multifunctional Patient Floor Lift
Maxi Move 5
New
Medical Cart
Medical Carts
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.