We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




AI Helps Identify Liver Cirrhosis Using Electronic Health Records

By HospiMedica International staff writers
Posted on 28 Mar 2023
Print article
Image: Futuristic illustration of a liver created by DALL-EE AI (Photo courtesy of MUSC)
Image: Futuristic illustration of a liver created by DALL-EE AI (Photo courtesy of MUSC)

Cirrhosis, which is the end-stage of chronic liver disease and ranked as the 9th leading cause of death in 2021 by the Centers for Disease Control and Prevention, can result from various forms of liver damage and disease. Identifying patients who are likely to progress to cirrhosis has been difficult. However, early diagnosis could improve disease management. Artificial intelligence (AI) can be used to collect and analyze vast amounts of data, often from the electronic health record (EHR) containing the patient’s health history. While computers can easily interpret data entered into forms, it has been challenging to extract information from narrative text, such as clinician notes or discharge summaries. Previous attempts to extract information relied on keyword searches, which required input from a clinician familiar with the disease and multiple rounds of trial and error.

Researchers at the Medical University of South Carolina (MUSC, Charleston, SC, USA) have created a new AI method to automate the detection of liver cirrhosis by utilizing extensive data from EHRs. The AI model, called a convolutional neural network (CNN), mimics the neurons in the brain and was trained on EHRs of patients previously diagnosed with cirrhosis. By analyzing information embedded in narrative text and utilizing multiple layers of artificial neurons, the neural network can extract features and patterns to help identify cirrhosis.

After training on patient records manually reviewed to confirm cirrhosis diagnosis, the researchers applied their deep learning-based AI model that does not require prompts to a new set of health records. The model demonstrated exceptional success in identifying cirrhosis patients based solely on narrative text in clinician notes. Specifically, the trained CNN model achieved a precision rate of 97% when identifying cirrhosis patients using clinical text found in patient discharge summaries alone. While AI and machine learning have the potential to revolutionize the medical field, the researchers believe that these models are not meant to replace clinical judgment but rather to support and enhance it. Therefore, clinicians remain responsible for solving the case, with AI serving as a powerful tool to assist them, according to the researchers.

“The nice thing about using deep learning models is that the model learns from the examples you give it, without training it to look for certain words,” said Jihad Obeid, M.D., a professor in Biomedical Informatics at MUSC. “I think it's exciting that it was successful at identifying cirrhosis using just the text in the discharge summaries, as is the idea of taking it to the next level to see if we can apply it for earlier identification.”

Related Links:
MUSC

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Oxygen Concentrator
ZH-A51
New
Hospital Bed
Alphalite

Print article

Channels

Critical Care

view channel
Image: The study used a new electronic diagnostic model as an alternative to kidney biopsies to predict AIN (Photo courtesy of 123RF)

Electronic Diagnostic Model Predicts Acute Interstitial Nephritis in Patients

Acute interstitial nephritis (AIN) is a frequent cause of acute kidney injury (AKI), characterized by inflammation and swelling of certain kidney tissues. It is typically associated with the use of medications... Read more

Surgical Techniques

view channel
Image: A wireless, fully implantable LVAD system could reduce the risk of infections and complications (Photo courtesy of 123RF)

Wireless, Fully Implantable LVAD System to Make Life Easier for Heart Failure Patients

Left Ventricular Assist Devices (LVADs) have traditionally relied on physical drivelines to provide power, creating a connection through the patient's skin. These drivelines increase the risk of infections... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.