We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




AI Helps Hospitals Priorities Patients for Urgent Intensive Care and Ventilator Support

By HospiMedica International staff writers
Posted on 23 Jan 2023
Print article
Image: Researchers have developed an AI-enabled system for prioritizing pneumonia patient treatment (Photo courtesy of Swansea University)
Image: Researchers have developed an AI-enabled system for prioritizing pneumonia patient treatment (Photo courtesy of Swansea University)

Researchers have developed a ‘digital twin’ that can help hospitals to prioritize patients for urgent intensive care and ventilator support. The new innovative system could potentially allow patients to be seen more quickly and receive the most effective treatment based on data from previous pneumonia sufferers.

The three-tiered system developed by a research team at Swansea University (Swansea, UK) uses deep learning methods to build patient-specific digital twins to identify and prioritize critical cases among patients with severe pneumonia. A digital twin is a virtual representation (or computer program) of a real-world physical system or product – it is updated from real-time data, and uses simulation, machine learning and reasoning to aid in decision-making.

“A human digital-twin is a digital replica of a human system or sub-system. This replica is a personalized digital representation, in terms of structure or functioning or both, of an individual or patient’s system,” said Professor Perumal Nithiarasu, Author and Associate Dean for Research, Innovation & Impact in the Faculty of Science & Engineering. “A human digital-twin is a digital replica of a human system or sub-system. This replica is a personalized digital representation, in terms of structure or functioning or both, of an individual or patient’s system. It can provide real-time feedback on how a patient’s health is likely to vary based on their current known condition using periodic input data from the patient’s vitals (such as heart rate, respiration rate).”

“The proposed digital-twin is built on pre-trained deep learning models using data from more than 1895 pneumonia patients. Overall, results indicate that the prediction for ITU and mechanical ventilation prioritization is excellent,” added Professor Nithiarasu. “The data used to train the models is for non-COVID-19 patients with pneumonia. However, this model may be employed in its current form to COVID-19 patients, but transfer learning with COVID-19 patient data will improve the predictions.”

“The COVID-19 pandemic has put an unprecedented stress on an already strained healthcare infrastructure. This situation has forced healthcare providers to prioritize patients in critical need to access ITUs and mechanical ventilation,” explained Dr. Neeraj Kavan Chakshu, Co-Author and IMPACT Fellow. “In the case of COVID-19 (and in other similar forms of influenza), more precise and dynamically evolving system may be necessary to address the sudden increase in severity and the need for mechanical ventilation.”

Related Links:
Swansea University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Documentation System For Blood Banks
HettInfo II
New
Monitor Cart
Tryten S5

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.