We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Artificial Intelligence May Support Endoscopic Diagnosis of Early Gastric Cancer

By HospiMedica International staff writers
Posted on 19 May 2022

Gastric cancer (GC) is the fifth most common cancer worldwide and the third leading cause of cancer death. More...

Endoscopy is the most powerful tool for detection and diagnosis of GC, but the accuracy of detection depends on the experience of the endoscopists and is complicated by various factors of the gastrointestinal (GI) tract. Artificial intelligence (AI) for GC diagnosis has been discussed in recent years. The role of AI in early GC is more important than in advanced GC since early GC is not easily identified in clinical practice. However, past syntheses appear to have limited focus on the populations with early GC. Now, the findings of a new study support the diagnostic accuracy of AI in the diagnosis of early GC from endoscopic images.

Researchers at Taipei Medical University (Taipei, Taiwan) conducted a systematic review from database inception to June 2020 of all studies assessing the performance of AI in the endoscopic diagnosis of early GC. Studies not concerning early GC were excluded. The outcome of interest was the diagnostic accuracy (comprising sensitivity, specificity, and accuracy) of AI systems. Study quality was assessed on the basis of the revised Quality Assessment of Diagnostic Accuracy Studies. Meta-analysis was primarily based on a bivariate mixed-effects model. A summary receiver operating curve and a hierarchical summary receiver operating curve were constructed, and the area under the curve was computed.

The researchers analyzed 12 retrospective case control studies (n=11,685) in which AI identified early GC from endoscopic images. The pooled sensitivity and specificity of AI for early GC diagnosis were 0.86 (95% CI 0.75-0.92) and 0.90 (95% CI 0.84-0.93), respectively. The area under the curve was 0.94. Sensitivity analysis of studies using support vector machines and narrow-band imaging demonstrated more consistent results. For early GC, this was the first synthesis study on the use of endoscopic images in AI in diagnosis. Based on the findings, the researchers concluded that AI may support the diagnosis of early GC. However, the collocation of imaging techniques and optimal algorithms remain unclear. Nevertheless, competing models of AI for the diagnosis of early GC are worthy of future investigation, according to the researchers.

Related Links:
Taipei Medical University


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Intelligent Mattress System
DualPlus
New
Pressure Transducer
TruWave
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.