We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Synthesized X-Ray Images Help Train AI Programs

By HospiMedica International staff writers
Posted on 17 Jul 2018
A new study describes how computer generated X-rays can be used to augment artificial intelligence (AI) training sets.

In order to generate and continually improve artificial X-rays, researchers at the University of Toronto (Canada) used deep convolutional generative adversarial network (DCGAN) algorithms, which are made up of two networks: one that generates the images, and the other that tries to discriminate synthetic images from real images. More...
The two networks are continuously trained until they reach a point in which the discriminator cannot differentiate real images from synthesized ones. Once a sufficient number of artificial X-rays are created, they are used to train another DCGAN that can classify the images accordingly.

The researchers then compared the accuracy of the artificially augmented dataset to the original one when fed through their AI system, and found that classification accuracy improved by 20% for common conditions. For some rare conditions, accuracy improved up to 40%. An advantage of the method is that as the synthetic X-rays are not real, the dataset can be readily available to researchers outside hospital premises without violating privacy concerns. The study was presented at the IEEE International Conference on Acoustics, Speech and Signal Processing, held during April 2018 in Calgary (Canada).

“In a sense, we are using machine learning to do machine learning,” said senior author and study presenter Professor Shahrokh Valaee, PhD, of the Machine Intelligence in Medicine Lab (MIMLab). “We are creating simulated X-rays that reflect certain rare conditions so that we can combine them with real X-rays to have a sufficiently large database to train the neural networks to identify these conditions in other X-rays.”

“Deep learning only works if the volume of training data is large enough, and this is one way to ensure we have neural networks that can classify images with high precision,” concluded Professor Valaee. “We've been able to show that artificial data generated by deep convolutional GANs can be used to augment real datasets. This provides a greater quantity of data for training and improves the performance of these systems in identifying rare conditions.”

Related Links:
University of Toronto


Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Sling
GoComfort
New
Tracheostomy Tube
Portex BLUselect
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Surgical Techniques

view channel
Image: The engine-free, nonlinear, flexible, micro-robotic platform leverages AI to optimize GBM treatment (Photo courtesy of Symphony Robotics)

First-Ever MRI-Steerable Micro-Robotics to Revolutionize Glioblastoma Treatment

Glioblastoma Multiforme (GBM) is one of the most aggressive and difficult-to-treat brain cancers. Traditional surgical procedures, such as craniotomies, involve significant invasiveness, requiring large... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.