Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




3D-Printed Blood Vessels Could Improve Outcomes for Heart Bypass Patients

By HospiMedica International staff writers
Posted on 29 Jul 2024

Strong, flexible, gel-like tubes developed through innovative 3D printing technology could improve heart bypass surgery outcomes, replacing the human and synthetic veins currently used to divert blood flow, according to experts. The creation of synthetic vessels can reduce scarring, pain, and infection risks linked to the extraction of human veins in bypass procedures. These products could also address the shortcomings of small synthetic grafts, which often struggle to integrate into the body, according to research published in Advanced Materials Technologies.

A research team led by The University of Edinburgh’s School of Engineering (Edinburgh, UK) employed a two-stage technique, integrating a rotating spindle with a 3D printer to fabricate tubular grafts from a water-based gel. This printed graft was reinforced using a process known as electrospinning, which utilizes high voltage to produce extremely fine nanofibers, thus coating the artificial blood vessel with biodegradable polyester molecules. Tests have confirmed that these products match the strength of natural blood vessels. The grafts, adjustable in diameters from 1 to 40 mm, are versatile for various applications, and their flexibility facilitates easy integration into the human body, according to the team. Future research phases will test these synthetic blood vessels in animal studies, with subsequent human trials planned.

“The results from our research address a long-standing challenge in the field of vascular tissue engineering – to produce a conduit that has similar biomechanical properties to that of human veins,” said Dr. Norbert Radacsi, Principal investigator, School of Engineering, University of Edinburgh. “With continued support and collaboration, the vision of improved treatment options for patients with cardiovascular disease could become a reality.”

Related Links:
The University of Edinburgh’s School of Engineering

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
New
4K-3D NIR/ICG Video Endoscope
TIPCAM 1 Rubina
New
Transportation Stretcher
ES709
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.