Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Robotic System Remotely Operates Ventilators in COVID-19 Wards

By HospiMedica International staff writers
Posted on 25 Aug 2020
A new robotic system allows medical staff to remotely operate ventilators and other bedside machines from outside intensive care rooms of patients suffering from infectious diseases.

Developed at Johns Hopkins University (JHU; Baltimore, MD, USA) and Johns Hopkins Medicine (JHM; Baltimore, MD, USA), the robotic device is affixed to the ventilator's touch screen with a horizontal bar that is secured across the top edge. The bar serves as a stationary track for the back-and-forth movement of two connected vertical bars that extend the full height of the screen. As the vertical bars sweep across the screen, a stylus they carry moves up and down according to its commands, similar to how an Etch A Sketch moves its drawing tool along an X-Y axis.

A camera connected to the top bar sends an image of the screen to the operator's tablet outside the room. The system is still being tested, but in initial trials at the Johns Hopkins Hospital biocontainment unit, a tablet was used to remotely change oxygen percentage and volume delivered by a ventilator to a mannequin in an adjoining room. According to the developers, the robotic system can be deployed to help hospitals preserve protective gear, limit staff exposure to COVID-19, and provide more time for clinical work.

“Routine adjustments typically take just a couple minutes inside a room. But putting on and removing gear added an additional six minutes to the process. Doing that 10 times in a single shift steals an entire hour that could have been spent delivering patient care,” said respiratory therapist Jonathan Cope, who assisted with the project. “This remote-control system will be a force multiplier for our frontline clinicians. Being able to save time to deliver more care to more patients will pay huge dividends when we face massive patient surges during pandemicsm.”

The COVID-19 pandemic spurred a surge of highly infectious patients requiring ventilators, infusion pumps, and other equipment. Treating such intensive care patients requires personnel to don and doff personal protective equipment (PPE) every time, even for minor adjustments to machines. The process burns through limited supplies, and also wastes valuable time and personnel as the procedure requires an additional person to assist with the changing of gowns, gloves, masks, and other gear.

Related Links:
Johns Hopkins University
Johns Hopkins Medicine



Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
Double Door Pharmacy Refrigerator
iPR256-GX
New
Prostate Cancer MRI Analysis Tool
DynaCAD Urology
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.