We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




mHealth Spectroscopy Measures Hemoglobin Optically

By HospiMedica International staff writers
Posted on 08 Jun 2020
Print article
Image: Professor Kim using the Hemoglobin smartphone app (Photo courtesy of Vincent Walter/ Purdue University)
Image: Professor Kim using the Hemoglobin smartphone app (Photo courtesy of Vincent Walter/ Purdue University)
A novel smartphone-based technique helps assess blood hemoglobin (Hgb) and blood disorders without drawing blood, claims a new study.

Developed at Purdue University (Lafayette, IN, USA), Vanderbilt University (Nashville, TN, USA), and Moi University (Nairobi, Kenya), the smartphone app is based on spectral super-resolution (SSR) spectroscopy, which transforms the built-in camera of a smartphone into a hyperspectral imager, without the need for hardware modifications or accessories. The Hgb measurements are based on statistical learning of SSR of the eyelids, and reconstruction of the detailed spectra from the camera’s three color RGB data. To perform an Hgb measurement, the patient pulls down the inner eyelid to expose the small blood vessels underneath.

A healthcare professional then uses the smartphone app to take pictures of the inner eyelids. The SSR then extracts the detailed spectral information from the camera's images and a computational algorithm quantifies Hgb content from the data. The mobile app also includes features designed to stabilize image quality and synchronize the smartphone flashlight so as to obtain consistent images. The inner eyelid was selected as the sensing site because microvasculature is easily visible there, and it is not affected by skin color, which eliminates the need for any personal calibrations.

With the aid of a randomly selected group of 138 patients who had conventional blood tests at the Moi University Teaching and Referral Hospital, the researchers first trained the algorithm, and then tested the mobile health app with the remaining 15 volunteers. The results showed that the prediction errors for the smartphone technique were within 5-10% of those measured with clinical laboratory blood tests. They now plan to use the mobile health tool to assess nutritional status, anemia, and sickle cell disease. The study was published in the June 2020 issue of Optica.

“This new technology could be very useful for detecting anemia, which is characterized by low levels of blood hemoglobin. This is a major public health problem in developing countries, but can also be caused by cancer and cancer treatments,” said senior author Professor Young Kim, PhD, of Purdue University. "The COVID-19 pandemic has greatly increased awareness of the need for expanded mobile health and telemedicine services.”

Related Links:
Purdue University
Vanderbilt University
Moi University


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
New
Vital Signs Monitor
iM3s
New
Portable Ventilator
Oxivent Life

Print article

Channels

Critical Care

view channel
Image: The new technology can make heart-related predictions more widely accessible through the use of wearables (Photo courtesy of Fred Zwicky/UIUC)

Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery

The heart's response to physical activity is a vital early indicator of changes in health, particularly in cardiovascular function and mortality. Extensive research has demonstrated a connection between... Read more

Surgical Techniques

view channel
Image: The diffusion model was trained on real LGE-MRI distributions and generated synthetic fibrosis distributions from Gaussian noise (Photo courtesy of Frontiers, DOI: 10.3389/fcvm.2025.1512356)

AI-Generated Synthetic Scarred Hearts Aid Atrial Fibrillation Treatment

Atrial fibrillation (AF) is a common heart rhythm disorder, often linked to the development of fibrosis, which is the formation of scar tissue in the heart. This fibrosis typically arises due to aging,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.