We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Controlled Fluid Exchange System Advances Neurocritical Care

By HospiMedica International staff writers
Posted on 30 Dec 2019
A transformative fluid management system combines controlled irrigation with ongoing drainage to better manage patients with intracranial bleedings.

The IRRAS (Stockholm, Sweden) IRRAflow device is an intracranial pressure (ICP) monitoring and drainage system designed to manage intracranial cerebrospinal fluid (CSF) volume. The system includes a reusable control unit, the IRRAflow tube set, and the IRRAflow dual-lumen catheter. The dynamic fluid management takes place in a closed-circulatory system, in which ICP is continuously monitored and adjusted through cyclical fluid irrigation and drainage. The system is intended for use in patients with increased ICP in whom an external drainage and monitoring is needed for up to 24 hours.

An aspiration bag attached to the control unit can be height-adjusted in order to define the relative positions of the aspiration bag and the IRRAflow catheter tip intracranial position, thus controlling the speed of CSF drainage by regulating hydrostatic pressure. As the system is unidirectional and gravity-driven, drainage rate can be actively guided and optimized for each patient. The system’s default mode allows single bolus fluid injections (on a parallel saline line) in order to flush out the catheter whenever it becomes clogged. CSF or intracranial fluid samples can also be taken from the aspiration port for analysis.

“In my previous patient treatment experience with IRRAflow, I found the system's combination of irrigation and drainage to be a valuable tool in treating my critically ill patients with intracranial bleeding and brain infections,” said neurosurgeon Behnam Rezai Jahromi, MD, of Helsinki University Hospital (Finland). “Innovation in neurocritical care has been limited through the years, and I look forward to studying the potential impact of IRRAflow more closely in the future.”

External ventricular drains (EVDs) are vital tools for managing ICP during neurological emergency situations by regulating excess fluid drainage, critical for the recovery of such patients. Unfortunately, most EVDs are generally primitive systems that rely solely on gravity alone, and as a result, they have been plagued by blockages that can lead to inefficient drainage and other complications.

Related Links:
IRRAS
Helsinki University Hospital



Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Patient Warming Blanket
Patient Warming Blanket
New
Multi-Parameter Patient Monitor
S90
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Professor Bumsoo Han and postdoctoral researcher Sae Rome Choi of Illinois co-authored a study on using DNA origami to enhance imaging of dense pancreatic tissue (Photo courtesy of Fred Zwicky/University of Illinois Urbana-Champaign)

DNA Origami Improves Imaging of Dense Pancreatic Tissue for Cancer Detection and Treatment

One of the challenges of fighting pancreatic cancer is finding ways to penetrate the organ’s dense tissue to define the margins between malignant and normal tissue. Now, a new study uses DNA origami structures... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.