We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




‘Band-Aid’ Measures Glucose Levels in Sweat Using Microlaser Technology

By HospiMedica International staff writers
Posted on 09 Jul 2024
Print article
Image: The smart plaster comprises microlaser sensors embedded in liquid crystal droplets that pick up lactate, glucose and urea (Photo courtesy of NTU Singapore)
Image: The smart plaster comprises microlaser sensors embedded in liquid crystal droplets that pick up lactate, glucose and urea (Photo courtesy of NTU Singapore)

Diabetic patients generally use invasive finger prick tests to monitor their blood glucose levels, requiring them to prick their fingers to collect a blood sample for testing with a portable glucose meter. An alternative involves sensor-based monitoring devices, which, while effective, are expensive, rigid, and need to be attached to the skin for extended periods. However, human sweat contains biomarkers like glucose, lactate, and urea, which reflect various health conditions and can be collected non-invasively and painlessly, making it an ideal medium for daily health monitoring. Scientists have now developed a new 'band-aid' or smart plaster that measures these biomarkers in sweat, offering a non-invasive and effective method for health monitoring.

A team of scientists from Nanyang Technological University in Singapore created the compact and flexible light-based sensing device, similar to a plaster, which can provide highly accurate biomarker readings within minutes. This device was created by embedding microlasers within liquid crystal droplets, which are then encapsulated in a soft hydrogel film. The microlasers are tailored to detect three specific biomarkers: lactate, glucose, and urea. Each biomarker is indicated by a differently colored liquid crystal dot on the plaster. As sweat interacts with the plaster, the intensity of light emitted by the microlasers changes according to the biomarkers' concentration levels. Users can read these biomarker levels by shining a light on the plaster, whereupon the emitted light is analyzed and interpreted through a mobile application.

In real-live experiments, the plaster successfully detected minute variations in the levels of glucose, lactate, and urea in sweat down to 0.001 millimeters (mm), achieving a sensitivity 100 times greater than existing similar technologies. The NTU team believes that their innovation, reported in the journal Analytical Chemistry, is the first wearable sensing device capable of measuring multiple sweat biomarkers with such high sensitivity and dynamic range. This high sensitivity allows for monitoring a broad range (from low to high) of biomarker levels, offering detailed insights into a patient's health status. Moving forward, the researchers plan to enhance the microlaser sensors to detect a wider variety of substances, including drugs and other chemicals present in sweat.

“Our device is capable of detecting both the high and low range of biomarkers levels,” said NTU PhD candidate Nie Ningyuan. “This is particularly beneficial for diabetic patients as current similar health monitoring devices focus on tracking only high glucose levels, but not abnormal or low glucose levels, which may indicate other health complications. In comparison, our device will provide a clearer picture of the users’ health condition with a variety of readings captured.”

Related Links:
NTU Singapore

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Carotid Artery Stent
Roadsaver
New
Lithotripter
Swiss LithoClast Trilogy

Print article

Channels

Surgical Techniques

view channel
Image: Design and fabrication of biodegradable electrode for brain stimulation (Photo courtesy of Biomaterials, DOI:10.1016/j.biomaterials.2024.122957)

Biodegradable Electrodes Repair Damaged Brain Tissue Without Need for Surgical Removal

Neurological disorders often lead to irreversible cell loss and are a major cause of disability worldwide, with limited treatment options available. A promising therapeutic approach is the stimulation... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.