We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Touchless Vital Signs Monitor Could Detect Heart Problems Earlier

By HospiMedica International staff writers
Posted on 19 Jan 2016
Print article
Image: Prof. Alexander Wong and Robert Amelard analyze blood-flow data extracted with the new touchless device (Photo courtesy of Fred Hunsberge/Waterloo University).
Image: Prof. Alexander Wong and Robert Amelard analyze blood-flow data extracted with the new touchless device (Photo courtesy of Fred Hunsberge/Waterloo University).
A novel system based on transmittance photoplethysmographic imaging (PPGI) can be used as an alternative for measuring blood pulse signals at a distance.

Developed by researchers at the University of Waterloo (Canada), the patent-pending device monitors a patient's blood flow at multiple arterial points simultaneously, without direct contact with the skin, using a technology called coded hemodynamic imaging; temporally coded illumination (TCI) is used for ambient light correction. The device relays the measurements from all of the pulse points to a signal processing pipeline for PPGI signal extraction, thus allowing for continuous monitoring.

Experimental results have shown that the processing steps yield a substantially more pulsatile PPGI signal than the raw acquired signal, resulting in statistically significant increases in correlation for both short- and long-distance monitoring. According to the researchers, long-distance heart rate monitoring using the device is ideal for assessing patients with painful burns, highly contagious diseases, or infants in neonatal intensive care units (nICUs), whose miniscule fingers make traditional monitoring difficult. The study was published on October 6, 2015, in Nature Scientific Reports.

“Since the device can also scan multiple patients individually at once and from a distance, consider the potential in mass emergency scenarios or long-term care homes,” said senior author Prof. Alexander Wong, PhD, of the faculty of engineering. “This technology provides for a more predictive approach to monitor vitals and the potential for its use is extensive, such as indicating arterial blockages that might otherwise go undetected, or warning older adults who risk falling as a result of getting dizzy when they stand.”

PPG was invented in the 1930’s to detect changes in light intensity, serving as a proxy measure for changes in blood volume in a particular area of the body. Until now, PPG has only been effective when it was used in close proximity with the patient's body, but the new device is equipped with sensors that are able detect hemodynamic waveforms from a distance.

Related Links:

University of Waterloo


Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Mammo 3D Performance Kits
Mammo 3D Performance Kits
New
Digital Radiography System
DigiEye 330

Print article

Channels

Surgical Techniques

view channel
Image: Vibrational spectroscopy instrument (Photo courtesy of Mariam Al-Masmudi/CNIO)

‘Molecular Flashlight’ Detects Brain Metastasis Using Ultra-Thin Probe

One of the major challenges in biomedical research is the non-invasive monitoring of molecular changes in the brain caused by cancer and other neurological conditions. Now, a new experimental technique... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.