We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Dual-Channel Fluorescence Imaging Enables Precise and Safe Pulmonary Segmentectomy

By HospiMedica International staff writers
Posted on 05 Jul 2024
Print article
Image: Process of minimally invasive surgery (Photo courtesy of Korea University College of Medicine)
Image: Process of minimally invasive surgery (Photo courtesy of Korea University College of Medicine)

Recently, advancements in lung cancer surgery have focused on enhancing the patient's quality of life by maximizing the removal of cancerous tissue while conserving as much healthy tissue as possible. Large-scale clinical studies from the US and Japan have shown that for early-stage lung cancer lesions smaller than 2cm, a limited segmentectomy provides a 5-year survival rate comparable to that of a lobectomy, but with greater preservation of normal lung tissue. However, segmentectomy demands precise demarcation between cancerous lung segments and healthy areas, a topic that has been underexplored in research. Now, new research has revealed that lung tumors and intersegmental lines can be simultaneously explored and resected using dual-channel fluorescence agents.

In a first-of-its-kind joint research, a team from the Department of Thoracic and Cardiovascular Surgery, Korea University's Guro Hospital (Seoul, South Korea) and Harvard Medical School (Boston, MA, USA) has developed a technique for precise and safe pulmonary segmentectomy. This technique utilizes dual-channel near-infrared fluorescence imaging to delineate cancer margins, employing two types of fluorescence (cRGD-ZW800-PEG at 800 nm wavelengths and ZW700-1C at 700 nm wavelengths). This approach allows surgeons to simultaneously identify lung tumors and intersegmental lines during the operation. The effectiveness of this dual-channel fluorescence imaging technique was assessed using medium and large-sized animal models diagnosed with lung cancer.

The results showed that both lung cancer and intersegmental lines could be simultaneously visualized for up to 30 minutes during surgery by injecting a cancer-targeting fluorescence agent (cRGD-ZW800-PEG) and contrast agents to visualize blood flow distribution around the tumor (ZW700-1C and ZW800-PEG). This confirmed the high efficacy of the fluorescence agents in surgical applications. Moreover, the dual-channel fluorescence agents proved to be both physically and chemically stable. Importantly, they demonstrated excellent in vivo safety, as evidenced by over 85% of the substance being excreted through the kidneys within four hours of intravenous administration, as verified by preclinical trials. This study result was published in the SCIE-level International Journal of Surgery.

"This study will open a new paradigm in image-guided cancer surgery via injection of cancer-targeting fluorescence (cRGD-ZW800-PEG) and ZW700-1C with excellent stability in vivo. Exploring lung tumors and intersegmental lines, which has been a difficult task so far, will now become easier using dual-channel fluorescence imaging technique," said Prof. Hyun Koo Kim of the Department of Thoracic and Cardiovascular Surgery, Korea University's Guro Hospital.

"Dual-channel near-infrared fluorescence and imaging technique can be applied not only to lung cancer but to other cancers as well. By resecting only tumors, unnecessary resection of normal tissue will be minimized and patients will have improved quality of life," added Prof. Hak Soo Choi of Harvard Medical School.

Related Links:
Guro Hospital
Harvard Medical School 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Portable Patient Lift
Maxi Move
New
Portable HF X-Ray Machine
PORTX

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.