We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

MRI-Guided Multi-Stage Robotic Positioner Enhances Stereotactic Neurosurgery Precision

By HospiMedica International staff writers
Posted on 30 May 2024
Print article
Image: The interactive multi-stage robotic positioner is specifically designed for MRI-guided stereotactic neurosurgery (Photo courtesy of University of Hong Kong)
Image: The interactive multi-stage robotic positioner is specifically designed for MRI-guided stereotactic neurosurgery (Photo courtesy of University of Hong Kong)

Magnetic resonance imaging (MRI) offers significant benefits in neurosurgery, providing detailed 3D visualizations of neurovascular structures and tumors. Traditionally, its use has been restricted to analyzing static images taken before or after surgery, leading to potential inaccuracies due to the setup of stereotactic frames, image registration, and brain shifts. Researchers have now developed a specialized interactive multi-stage robotic positioner for use in MRI-guided stereotactic neurosurgery, enhancing the precision of these surgical interventions.

This advanced system developed by a team from the University of Hong Kong (HKU, Pokfulam, Hong Kong) is designed to assist in various procedures such as cannula or needle targeting, which are crucial in treatments like deep brain stimulation (DBS) for movement disorders including Parkinson’s disease. Additionally, it supports a variety of therapeutic interventions like biopsy, drug delivery, ablation, and catheter placement into deep brain areas. In 2018, this team successfully developed the world’s first robotic system capable of conducting bilateral stereotactic neurosurgery within an MRI setting, which helped overcome challenges associated with lengthy procedures and complex workflows. The initial prototype has since been refined by the team.

The latest version of this system facilitates interactive, semi-automatic manipulation in two stages. Initially, based on pre-operative images, the surgeon positions the robotic instrument guide towards the target trajectory. The system incorporates fiber-optic lighting to visually indicate any angulation errors relative to the target trajectory. When the instrument guide is aligned within 5 degrees of the target, it can be remotely locked in place. The system uses finite element analysis (FEA) for design optimization and employs a fluid-driven soft actuator architecture to position the instrument with an orientation error of less than 0.2 degrees. Orientation locking is robust, utilizing soft robotic mechanisms such as tendon-driven baking units and granular jamming.

Following this setup, the surgeon manually inserts the instrument through the robot-guided pathway, with an insertion stopper aiding in setting the precise depth. This technology helps eliminate the inherent errors found in traditional frame-based stereotaxy, thus enhancing insertion accuracy and improving surgical outcomes. It also reduces the duration of the operation, which contributes to greater patient comfort and satisfaction. The device itself is compact and lightweight (97 x 81 mm, 203g), designed to be compatible with most standard imaging head coils. It includes custom-made miniature wireless omnidirectional tracking markers and a zero-electromagnetic-interference system to support accurate robot registration under real-time MRI conditions. The system's effectiveness has been confirmed through cadaveric studies and skull model testing, achieving a precision error of less than 3 mm and showing significant potential for future clinical application.

Related Links:
University of Hong Kong

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
LED Surgical Light
Convelar 1670 LED+/1675 LED+/1677 LED+
New
In-Bed Scale
IBFL500

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.