We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Ultrasound Wireless Charging To Power Deep Implantable Biomedical Devices

By HospiMedica International staff writers
Posted on 27 May 2024
Print article
Image: The wireless power transfer system consists of an ultrasound transmitter outside the body (Photo courtesy of DGIST)
Image: The wireless power transfer system consists of an ultrasound transmitter outside the body (Photo courtesy of DGIST)

Current wireless charging technologies for implanted biomedical devices like pacemakers and cochlear implants primarily utilize electromagnetic or radio waves. However, these methods often lose considerable power as they travel through tissue, reducing their efficiency for devices implanted deeper within the body. Additionally, they can cause unwanted side effects, such as tissue heating and immune responses. In contrast, ultrasound-based wireless power transfer is emerging as a superior alternative, able to penetrate deeper into tissues with less energy loss and fewer adverse effects. Now, a new study has shown that the shape of the implanted receiver can greatly enhance the effectiveness of power harvesting from an ultrasound beam.

In the study, researchers at the Daegu Gyeongbuk Institute of Science and Technology (DGIST, Seoul, South Korea) explored how variations in the size, shape, and positioning of the piezoelectric receiver could improve ultrasound energy harvesting. They discovered that placing the receiver within the focal area of a focused ultrasound beam markedly boosts the efficiency of the energy transfer. The piezoelectric receiver produced different phases of electrical signals based on its interaction with various parts of the ultrasound beam, with the most efficient energy transfer occurring within the beam’s main lobe, indicating that larger receivers, which interact with more of the ultrasound beam, are not always more effective.

To optimize these findings, the researchers developed an oblong-shaped ultrasound transmitter and receiver. This design allows the transmitter to create a wide main lobe at the focal point, while the receiver, tailored to match the shape of the transmitted beam, maximizes energy output efficiently. The effectiveness of this system was tested both underwater and through 50mm of porcine tissue, demonstrating that the oblong receiver could fully charge a battery through the tissue in just 1.8 hours, a duration that meets the requirements for commercial batteries.

“The combination of a focused beam and a well-matched receiver allows oblong-shaped ultrasound transmitter and receiver to achieve significantly higher energy delivery compared to conventional ultrasound-based wireless power transfer systems,” said DGIST Professor Jin Ho Chang who led the research team. “The combination of a focused beam and a well-matched receiver allows oblong-shaped ultrasound transmitter and receiver to achieve significantly higher energy delivery compared to conventional ultrasound-based wireless power transfer systems.”

Related Links:
DGIST

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Dual Display Telehealth Cart
AMiS-50ETB
New
Hemodialysis Treatment System
Dialog+

Print article

Channels

Critical Care

view channel
Image: Artificial intelligence-derived intracranial pressure monitors vital information noninvasively (Photo courtesy of Icahn Mount Sinai)

AI-Driven Tool to Revolutionize Brain Pressure Monitoring in Intensive Care Patients

Intracranial hypertension, characterized by increased pressure within the brain, can lead to severe consequences such as strokes and hemorrhages. Traditionally, monitoring this condition requires invasive... Read more

Surgical Techniques

view channel
Image: CADDIE cloud-based AI for colonoscopy supports doctors to detect and characterize polyps during colonoscopy procedures (Photo courtesy of Odin Vision)

Cloud-Based AI Endoscopy System Assists Gastroenterologists in Detecting Suspected Colorectal Polyps

Colorectal cancer is projected to cause over 53,000 deaths in the U.S. in 2024, ranking as the second leading cause of cancer-related deaths for both men and women. Alarmingly, the incidence in individuals... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.