We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Light-Activated Expanding Implant to Eliminate Open-Chest Surgeries for Shunt Replacement in Children

By HospiMedica International staff writers
Posted on 21 Aug 2024
Print article
Image: The blood shunt with an inner diameter that expands when exposed to a blue light-emitting catheter (Photo courtesy of Akari Seiner and Christopher Rodell)
Image: The blood shunt with an inner diameter that expands when exposed to a blue light-emitting catheter (Photo courtesy of Akari Seiner and Christopher Rodell)

Children born with congenital heart defects that impact the heart’s lower chambers often require multiple invasive surgeries early in life. The initial procedure typically involves implanting a plastic tube known as a shunt to enhance blood flow. As the child grows, this shunt frequently needs replacement to match their changing body size, leading to additional surgeries. Now, researchers have developed a shunt that can be expanded using light, marking a breakthrough that could reduce the number of open-chest surgeries these children have to undergo.

Congenital defects in the ventricles, or lower chambers of the heart, severely restrict blood flow to the lungs and body, necessitating surgical intervention for survival. Infants affected by these defects are often small at birth but can grow quickly after the initial shunt placement. To keep pace with their growth, repeated surgeries are required to implant larger shunts. Each surgery carries significant risks for the child. Previously, researchers at Drexel University (Philadelphia, PA, USA) had developed a prototype shunt that could expand by incorporating a hydrogel with polymers connected by crosslinks inside the tube. These crosslinks, when new ones formed, would expel water from the hydrogel, causing it to contract and thereby expand the shunt’s diameter. Initially, this process occurred automatically without external activation.

In their latest research, the team redesigned the shunt to use materials suitable for clinical applications and adjustable to individual needs. They engineered a new type of hydrogel that forms crosslinks in response to an external trigger, thereby increasing the diameter of the shunt. They chose blue light as the trigger because it has sufficient energy to start the reaction while being safe for living tissues. The researchers used a fiber-optic catheter with a light-emitting tip to activate the hydrogel. Surgeons can activate the light-sensitive hydrogel inside the shunt by inserting the catheter through an artery near the armpit and guiding it to the shunt, thus avoiding open-chest surgery.

Laboratory tests demonstrated that the shunt could be expanded incrementally based on the duration of light exposure, suggesting that post-implantation adjustments could be tailored to each child’s growth needs. They achieved up to a 40% dilation of the shunt, increasing its diameter from 3.5 millimeters to 5 millimeters. The team also evaluated the biocompatibility of the shunt, finding no significant risk of blood clots, inflammatory responses, or other adverse effects. Future plans include testing full-length prototypes in a synthetic model of the human circulatory system and later in animal models. The researchers believe this technology could also be adapted for other uses, such as replacing blood vessels in children who have sustained injuries.

“Our goal is to expand the inside of the tube with a light-emitting catheter that we insert inside the shunt, completely eliminating the need for additional surgeries,” said Christopher Rodell, an assistant professor of biomedical engineering at Drexel University. “Children aren’t just tiny adults; they continue to grow. That’s something we need to account for in biomaterials, how that graft will behave over time.”

Related Links:
Drexel University

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Hospital Data Analytics Software
OR Companion
New
Blanket Warming Cabinet
EC250

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.