We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Miniature Laser System Could Accurately Distinguish Tumors from Healthy Tissue

By HospiMedica International staff writers
Posted on 07 Dec 2023

The integration of lasers into ophthalmology since the early 1990s marked a significant technological advancement, and since then, laser technology has expanded its reach into other medical fields. More...

The use of lasers in surgery offers numerous benefits over traditional tools like scalpels and saws. However, their adoption has been limited to specific applications, partly due to concerns about potential injury to adjacent tissues and the challenge of controlling the cutting depth that could accidentally damage the deeper layers of tissue. Despite these challenges, laser technology continues to evolve, becoming more sophisticated and precise. Now, new research could significantly enhance the safe and effective use of lasers in surgical procedures.

A research team from the University of Basel (Basel, Switzerland) has made a notable breakthrough by creating a laser system that combines three critical functionalities: bone cutting, cutting depth control, and tissue differentiation. This multifunctional system employs three lasers, all focused on a single point. The first laser functions as a tissue sensor, scanning the area around the bone-cutting site. It emits regular pulses, vaporizing tiny tissue samples, whose composition is then analyzed by a spectrometer. Each tissue type emits a distinct spectrum, allowing the creation of a detailed map distinguishing bone from soft tissue. Only after this mapping process does the second laser, designed for bone cutting, activate, targeting areas identified as bone on the generated map. Concurrently, the third laser, an optical system, monitors the depth of the cut, ensuring it doesn’t exceed the intended level.

Throughout the procedure, the tissue sensor continuously verifies that the correct tissue is being cut. This self-regulating system operates autonomously, without human intervention. The team has conducted tests on pig femur bones and tissues, demonstrating the system’s precision down to minute fractions of a millimeter. The speed of this laser system is also comparable to conventional surgical methods. Current efforts are focused on reducing the system's size. The researchers have successfully condensed the optical and cutting lasers into a matchbox-sized unit. The next step is to incorporate the tissue sensor and further miniaturize the entire setup, ultimately fitting it into an endoscope for minimally invasive surgeries. This advanced system has potential applications across various surgical fields. It could, for instance, enable surgeons to more accurately differentiate and excise tumors from healthy tissue, minimizing the removal of uninvolved surrounding tissue. Additionally, the controlled laser cutting allows for innovative cut shapes, which could enhance the integration of bone implants with existing bone structures.

“Making more use of lasers in surgery is a worthy ambition for a number of reasons,” said Dr. Arsham Hamidi, lead author of the study. Contact-free cutting somewhat reduces the risk of infections, he points out. “Smaller and more precise incisions also mean that the tissue heals more rapidly, and that scarring is reduced.”

Related Links:
University of Basel 


Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Ultra-Low Temperature Freezer
iUF118-GX
New
Complete Hip System
Taperloc Complete Hip System
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.