We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

New Technique Combines ML with SWIR Fluorescence Imaging for Precise Surgical Tumor Removal

By HospiMedica International staff writers
Posted on 30 Mar 2023
Print article
Image: Machine learning combined with multispectral infrared imaging can guide cancer surgery (Photo courtesy of Pexels)
Image: Machine learning combined with multispectral infrared imaging can guide cancer surgery (Photo courtesy of Pexels)

Surgical tumor removal remains among the common procedures in cancer treatment, with approximately 45% of cancer patients undergoing this procedure at some point. Recent advances in imaging and biochemical technologies have improved a surgeon's ability to distinguish between tumors and healthy tissue. One such technique that enables this distinction is "fluorescence-guided surgery" (FGS). A new study proposes a method for classifying healthy and tumor cells using an intensity-independent approach. This method combines machine learning with short-wave infrared (SWIR) fluorescence imaging to precisely detect the boundaries of tumors.

FGS involves staining the patient's tissue with a dye that emits infrared light when irradiated with a special light source. The dye selectively binds to the surface of tumor cells, enabling the detection of the location and extent of the tumor based on the emitted lightwaves. However, most FGS-based methods rely on the absolute intensity of the infrared emissions to differentiate pixels corresponding to tumors. This approach is problematic since intensity is influenced by lighting conditions, camera setup, dye quantity, and staining duration. Therefore, intensity-based classification can lead to inaccurate interpretation.

The new technique developed by researchers at the University College London (London, UK) involves capturing multispectral SWIR images of the dyed tissue, rather than relying solely on measuring the total intensity over one wavelength. To achieve this, the team sequentially placed six different wavelength frequency (color) filters in front of their SWIR optical system and registered six measurements for each pixel. By doing this, the researchers were able to create spectral profiles for each type of pixel, including background, healthy tissue, and tumor. Subsequently, they trained seven machine learning models to accurately identify these spectral profiles in multispectral SWIR images.

The research team conducted in vivo training and validation of the models using SWIR images of an aggressive type of neuroblastoma in a lab model. They also evaluated various normalization techniques to make pixel classification independent of absolute intensity and dependent only on the pixel's spectral profile. The study involved testing seven machine learning models, with the top-performing model achieving a remarkable per-pixel classification accuracy of 97.5%. Specifically, the accuracies for tumor, healthy, and background pixels were 97.1%, 93.5%, and 99.2%, respectively.

In addition, the model's results were found to be highly robust against variations in imaging conditions due to the normalization of the spectral profiles. This is desirable for clinical applications because testing of new imaging technologies is typically done in ideal conditions that are not reflective of the real-world clinical setting. Based on their findings, the research team is optimistic about the potential of this methodology. They believe that conducting a pilot study to implement it in human patients could lead to significant advancements in the field of FGS.

Multispectral FGS has the potential to go beyond the current study's scope. It can be used to remove unwanted reflections and surgical or background lights from images, as well as offer noninvasive ways of measuring lipid content and oxygen saturation. Multispectral systems also allow for the simultaneous use of multiple fluorescent dyes with different emission characteristics since the signals from each dye can be untangled from the total measurements based on their spectral profiles. This multiple dye approach can target multiple aspects of a disease, providing surgeons with even more information. Future studies will undoubtedly explore the full potential of multispectral FGS, unlocking doors to more effective surgical procedures for treating cancer and other illnesses.

Related Links:
University College London

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
LED Examination Lamp
Clarity 50 LED
New
Transcatheter Heart Valve
SAPIEN 3 Ultra

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.