Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Caterpillar-Like Soft Magnetic Millirobot Could Perform Minimally Invasive Surgery

By HospiMedica International staff writers
Posted on 15 Sep 2022

The term “robot” brings to mind complicated machinery working in factories or roving on other planets. But “millirobots” might change that. They are robots about as wide as a finger that someday could deliver drugs or perform minimally invasive surgery. Some soft millirobots are already being developed for a variety of biomedical applications, thanks to their small size and ability to be powered externally, often by a magnetic field. Their unique structures allow them to inch or roll themselves through the bumpy tissues of our gastrointestinal tract, for example. They could someday even be coated in a drug solution and deliver the medicine exactly where it’s needed in the body. However, most millirobots are made of non-degradable materials, such as silicone, which means they would have to be surgically removed if used in clinical applications. In addition, these materials aren’t that flexible and do not allow for much fine-tuning of the robot’s properties, limiting their adaptability. Now, researchers have developed a soft, biodegradable, magnetic millirobot inspired by the walking and grabbing capabilities of insects.

Researchers at the University of Hong Kong (Hong Kong, China) set out to create a millirobot out of soft, biodegradable materials that can grab, roll and climb, but then easily dissolve away after its job is done. As a proof of concept, the researchers created a millirobot using a gelatin solution mixed with iron oxide microparticles. Placing the material above a permanent magnet caused the microparticles in the solution to push the gel outward, forming insect-like “legs” along the lines of the magnetic field. Then, the hydrogel was placed in the cold to make it more solid. The final step was to soak the material in ammonium sulfate to cause cross-linking in the hydrogel, making it even stronger. Changing various factors, such as the composition of the ammonium sulfate solution, the thickness of the gel or the strength of the magnetic field allowed the researchers to tune the properties. For example, placing the hydrogel farther away from the magnet resulted in fewer, but longer, legs.

Because the iron oxide microparticles form magnetic chains within the gel, moving a magnet near the hydrogel caused the legs to bend and produce a claw-like grasping motion. In experiments, the material gripped a 3D-printed cylinder and a rubber band and carried each one to new locations. In addition, the researchers tested the millirobot’s ability to deliver a drug by coating it in a dye solution, then rolling it through a stomach model. Once at its destination, the robot unfurled and released the dye with the strategic use of magnets. Since it’s made using water-soluble gelatin, the millirobot easily degraded in water in two days, leaving behind only the tiny magnetic particles. The researchers say that the new millirobot could open up new possibilities for drug delivery and other biomedical applications.

Related Links:
University of Hong Kong 

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Suction Electrode System
Strässle
New
4K-3D NIR/ICG Video Endoscope
TIPCAM 1 Rubina
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get complete access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.