We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Innovative Surgical Glue Could Replace Sutures and Staples

By HospiMedica International staff writers
Posted on 08 Aug 2017
Print article
Image: Associate professor Julie Liu (L) and doctoral student Sydney Hollingshead prepare to test the new protein-based adhesive (Photo courtesy of Erin Easterling / Purdue).
Image: Associate professor Julie Liu (L) and doctoral student Sydney Hollingshead prepare to test the new protein-based adhesive (Photo courtesy of Erin Easterling / Purdue).
Adhesive proteins produced by mussels could be the basis for bioinspired, non-toxic surgical glue for moist environments, according to a new study.

Developed by researchers at Purdue University (Lafayette, IN, USA), ELY16 glue is made of an elastin-like polypeptide (ELP) modified by adding the enzyme tyrosinase. The modification forms mELY16, in which the tyrosine residues are converted to 3,4-dihydroxyphenylalanine (DOPA), an adhesive molecule. Both ELY16 and mELY16 are not toxic to cells and work well under dry conditions; but modification with DOPA increases adhesion strength in highly humid conditions. The modified version can be tuned to varying environmental conditions and different tissue types.

ELPs have the innate ability to coacervate, which causes them to separate into two liquid phases, one denser and more protein-rich than the other, mimicking the adhesion mechanism used by sandcastle worms and mussels. According to the researchers, ELP, which can be produced in high yields from E. coli, can coacervate in response to environmental factors such as temperature, pH, and salinity. In laboratory tests, mELY16 has significantly higher adhesion strength in humid and underwater environments than commercially available fibrin sealants. The study was published in the April 2017 issue of Biomaterials.

“Our goal was to mimic the type of adhesion that mussel adhesive proteins have, and much other work has focused on the DOPA molecule as being critical to that adhesion,” said senior associate professor of chemical engineering and biomedical engineering Julie Liu, PhD. “When the adhesive materials were exposed to large amounts of moisture, proteins containing DOPA had a much higher adhesion strength compared to unconverted proteins containing only tyrosine. So, DOPA conferred much stronger adhesion in wet environments.”

Elastin is a highly elastic protein found in connective tissues that allows them to resume their shape after stretching or contracting, for example in skin. Elastin serves an important function in arteries as a medium for pressure wave propagation to help blood flow, and is particularly abundant in large elastic blood vessels such as the aorta. Elastin is also very important in the lungs, helping them to contract, and in elastic ligaments and cartilage, where it helps store mechanical energy for load-bearing muscles.

Related Links:
Purdue University

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Phototherapy Eye Protector
EyeMax2
New
X-ray Diagnostic System
FDX Visionary-A

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.