We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




3D-Printed Implants Improve Amputee Prosthetics Integration

By HospiMedica International staff writers
Posted on 10 Jul 2017
Print article
Image: A new study shows additive manufacturing 3D printing technologies can be used to produce transcutaneous osseointegrated prostheses (Photo courtesy of UNC).
Image: A new study shows additive manufacturing 3D printing technologies can be used to produce transcutaneous osseointegrated prostheses (Photo courtesy of UNC).
A new study shows that three dimensional (3D) additive manufacturing (AM) printing technologies can be used to customize implant surface textures and geometries to match the specific anatomy of human amputees.

Researchers at the University of North Carolina (UNC, Chapel Hill, USA) and North Carolina State University (NC State, Raleigh, USA) conducted a study to evaluate electron beam melting (EBM) and direct metal laser sintering (DMLS) for the manufacture of titanium osseointegrated implants. While EBM produces only a coarse textured implant, DMLS can create either a fine or coarse textured surface. For the study, two cohorts of Sprague-Dawley rats received bilateral titanium implants in their distal femurs, and were followed for four weeks.

The first cohort animals received EBM implants transcortically in one femur and a DMLS implant in the contralateral femur. The second cohort received DMLS implants (either fine textured or coarse textured in order to mimic EBM) in the intramedullary canal of each femur. The researchers then compared the two AM methods and the resulting strength of bone integration, interlocking, and torque. The results showed substantial differences between the two methods, including osseointegration and torsional properties, bone volume fraction (BV/TV), and bone-implant contact (BIC).

The researchers found that fixation strength of coarse textured implants provided superior interlocking, relative to fine textured implants, without affecting BV/TV or BIC in both rat cohorts. The coarse EBM implants in the transcortical model demonstrated an 85% increase in removal torque relative to the fine DMLS textured implants. On the other hand, the thrust load in the intramedullary model saw a 35% increase from fine to coarse DMLS implants. The study was published in the June 2017 issue of 3D Printing and Additive Manufacturing.

“Osseointegrated implants transfer loads from native bone to a synthetic joint and can also function transdermally to provide a stable connection between the skeleton and the prostheses, eliminating many problems associated with socket prostheses,” concluded senior author Paul Weinhold, PhD, of UNC, and colleagues. “Additive manufacturing provides a cost-effective means to create patient-specific implants, and allows for customized textures for integration with bone and other tissues. Due to spatial resolution, DMLS can produce surfaces with a roughness comparable to EBM.”

Direct transcutaneous osseointegrated prostheses constitute an emerging alternative to traditional socket prostheses that offer a stable connection, and the elimination of dermal lesions caused by the socket-skin interface. Osseointegrated implants also transfer loads from the residual native bone to a synthetic joint and back to the opposing bone in total joint replacements. AM implants provide a cost-effective means to customize the shape of the implant to interface with a patient's unique bone morphology, and allow for the customization of the surface texture that integrates directly with the bone and other tissues.

Related Links:
University of North Carolina
North Carolina State University
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
New
Transducer Covers
Surgi Intraoperative Covers
New
In-Bed Scale
IBFL500

Print article

Channels

Critical Care

view channel
Image: This handheld scanner is moved over breast tissue to monitor how well breast cancer tumors respond to chemotherapy or radiation treatment (Photo courtesy of Boston University)

Novel Medical Device Inventions Use Light to Monitor Blood Pressure and Track Cancer Treatment Progress

Traditional blood pressure devices often leave room for human error. To address this, scientists at Boston University (Boston, MA, USA) have developed a new blood pressure monitoring device based on speckle... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.