We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Brain Stimulation Reduces Spasticity after Spinal Cord Injury

By HospiMedica International staff writers
Posted on 03 Jul 2017
Print article
A new study claims that excitatory intermittent theta burst stimulation (iTBS) is successful in reducing spasticity in patients with spinal cord injury (SCI).

Researchers at Paracelsus Medical University (Salzburg, Austria), the University of Verona (Italy), and other institutions conducted a study to investigate if iTBS, a safe, non-invasive and well-tolerated protocol of excitatory repetitive transcranial magnetic stimulation (rTMS), is effective in modulating spasticity. The study included ten subjects with incomplete cervical or thoracic SCI. Five patients received 10 days of real or iTBS, and the remaining five received sham treatment. After two months, the sham group was switched to real iTBS and the study continued.

The researchers measured motor-evoked potentials (MEP) in the soleus (calf muscle), during magnetic stimulation over the most responsive area of the scalp. M-wave and H reflexes, which are measures of muscle contractions due to stimulation of the tibial nerve, were assessed for each subject, and an H/M amplitude ratio was determined. Modified Ashworth Scale (MAS) and the Spinal Cord Injury Assessment Tool for Spasticity (SCAT) were also compared before and after the stimulation protocols.

The results showed that patients receiving real iTBS showed significant increased resting and active MEPs amplitude and a significant reduction of the H/M amplitude ratio. In addition, both MAS and SCAT scores were significantly reduced after treatment. The changes persisted up to one week after the end of the iTBS treatment, and were not observed under the sham-iTBS condition, suggesting that iTBS may be a promising therapeutic tool for spasticity in SCI patients. The study was published on June 6, 2017, in Restorative Neurology and Neuroscience.

“Patients receiving real iTBS, compared to those receiving sham treatment, showed significant improvement,” said lead author Raffaele Nardone, MD, PhD, of Paracelsus Medical University. “In comparison with standard rTMS protocols, iTBS represents a more feasible approach because of lower stimulation intensity and shorter duration of application in each single session.”

Spasticity is a muscle control disorder caused by an imbalance between signals from the central nervous system (CNS) to the muscles. It is often found in people with cerebral palsy, traumatic brain injury (TBI), SCI, stroke, and multiple sclerosis (MS). It is characterized by increased muscle tone, overactive reflexes, involuntary movements, which may include spasms and clonus, pain, decreased functional abilities, abnormal posture, contractures, and bone and joint deformities.

Related Links:
Paracelsus Medical University
University of Verona
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Pulmonary Artery Catheter
Swan-Ganz
New
Oxygen Concentrator
Nuvo 8

Print article

Channels

Critical Care

view channel
Image: The study revealed how stress-related alterations in blood flow and blood vessel function are closely associated with heart disease (Photo courtesy of 123RF)

New Cardiovascular Risk Score Uses Stress Test to Predict Heart Disease More Accurately

A recent study has paved the way for the development of a new cardiovascular reactivity risk score, which could improve the ability to identify high-risk patients under stress and accelerate their diagnosis... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: Schematic diagram of a wireless, skin-contact system that simultaneously measures biosignals and delivers drugs (Photo courtesy of DGIST)

Versatile Smart Patch Combines Health Monitoring and Drug Delivery

As the global population ages, the need for personalized healthcare is becoming increasingly important. This shift has fueled a growing interest in wearable medical devices that can provide real-time health... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.