We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




New Grafting Material Made from Sea Urchin Spines

By HospiMedica International staff writers
Posted on 11 Apr 2017
Print article
Image: A new study claims sea urchin spines can be used to form biodegradable bone implants (Photo courtesy of ACS).
Image: A new study claims sea urchin spines can be used to form biodegradable bone implants (Photo courtesy of ACS).
Sea urchin spines possess superior material properties that could be used for the production of biodegradable artificial grafts for bone defect repair, claims a new study.

Researchers at the Institute of Metal Research (IMR) of the Chinese Academy of Sciences, the University of Science and Technology of China, and other institutions conducted a study to explore the potential applications of sea urchin (Heterocentrotus mammillatus) spines, which have a hierarchical open-cell structure similar to that of human trabecular bone, but also hold superior compressive strength (∼43.4 MPa), and are suitable for machining to a specified shape and size.

Finite element analysis revealed that compressive stress concentrates along the dense growth rings and dissipates through strut structures of the stereoms, indicating a mesostructure that plays an important role in the urchin spines high strength-to-weight ratios. Using a hydrothermal reaction, the researchers converted the spines to biodegradable magnesium-substituted tricalcium phosphate (β-TCMP) scaffolds, while still maintaining the spines' original interconnected, porous structure. The fracture strength of the hydrothermally converted β-TCMP scaffolds was ∼9.3 MPa, comparable to that of human trabecular bone.

Tests conducted on rabbits and beagles showed that bone cells and nutrients could flow through the pores and promote bone formation. Also, the scaffold degraded easily as it was replaced by the new growth. New bone formed along outer surfaces of the β-TCMP scaffolds one month after implantation, and grew into the inner open-cell spaces within three months. Fusion of the beagle lumbar facet joints using a Ti-6Al-4V cage and β-TCMP scaffold showed near complete degradation and replacement by newly formed bone ten months after implantation. The study was published on March 2, 2017, in ACS Applied Materials & Interfaces.

Marine calcium carbonate (CaCO3) skeletons have tailored architectures created by nature, which give them structural support and other functions. For example, seashells have dense lamellar structures, while coral, cuttlebone, and sea urchin spines have interconnected porous structures.

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Blanket Warming Cabinet
EC250
New
Phototherapy Eye Protector
EyeMax2

Print article

Channels

Critical Care

view channel
Image: This handheld scanner is moved over breast tissue to monitor how well breast cancer tumors respond to chemotherapy or radiation treatment (Photo courtesy of Boston University)

Novel Medical Device Inventions Use Light to Monitor Blood Pressure and Track Cancer Treatment Progress

Traditional blood pressure devices often leave room for human error. To address this, scientists at Boston University (Boston, MA, USA) have developed a new blood pressure monitoring device based on speckle... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.