Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Surgical Planning Software Simulates Cardiac Blood Flow

By HospiMedica International staff writers
Posted on 02 Mar 2017
A new technique uses imaging data and specialized simulation software to predict the prospective results of heart surgery.

Under development at Stanford University, SimVascular is an open source software that integrates custom code with open source packages to support clinical treatment and basic science research. SimVascular uses magnetic resonance imaging (MRI) and computerized tomography (CT) imaging data to construct a three-dimensional (3D) anatomical model of the heart, and afterwards simulates the patient’s blood flow using advanced tools to determine physiologic boundary conditions and fluid structure interaction.

The software includes an efficient finite element Navier-Stokes flow solver for complex geometries, and has already been used to create computational models of normal and diseased human cardiovascular and pulmonary anatomy, with concurrent input and output boundary conditions for various physiologic states. The vascular model repository--a sister project of SimVascular--will help simulate cardiovascular and pulmonary solid and fluid mechanics, providing spatially and temporally-resolved benchmark solutions for academic, government, and industry researchers to verify their computational methods.

“When you come into the hospital and get scanned in the MRI machine or a CT scanner, what we often get is a beautiful picture of your anatomy,” said professor of pediatrics and bioengineering Alison Marsden, PhD, of the Stanford Cardiovascular Biomechanics Computational Lab. “But we don’t get often this detailed picture of how the blood is flowing, recirculating, and moving through the blood vessels. And we also can’t use the imaging to make predictions.”

“Many surgeons now use a pencil and paper to sketch out their surgical plan based on the patient’s images,” added Professor Marsden. “What we’re trying to do is bring in that missing piece of what are these detailed blood flow patterns and what might happen if we go in and make an intervention; for example, opening up a blocked blood vessel or putting in a bypass graft.”


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Rapid Cleaning Verification Tool
ProExpose Protein Detection Test
New
Patient Monitor
Vista 300
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get complete access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.