We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Innovative Fusion Device Could Revolutionize Back Surgery

By HospiMedica International staff writers
Posted on 29 Dec 2015
Print article
Image: The Thru–Fuze device (Photo courtesy of USNW).
Image: The Thru–Fuze device (Photo courtesy of USNW).
A new spinal fusion device designed to reduce chronic back pain could negate the need for invasive surgery and bone grafts.

Under development by researchers at the University of New South Wales (UNSW; Sydney, Australia) the Thru–Fuze device is made of porous titanium that promotes bone growth and fusion both on and through the device after it is placed between the vertebrae. Over time, the device acts as a bridge between adjacent vertebrae for additional bone growth, resulting in rapid biomechanical fixation, without the need for a bone graft procedure or supporting metallic hardware.

According to the researchers, the device will allow faster, simpler surgery with minimal radiation exposure compared to current methods. Preclinical and laboratory testing in animal models has demonstrated rapid biomechanical fixation between the fusion device and the vertebrae. Human trials of the Thru-Fuze are expected to begin at the Prince of Wales Hospital (Sydney, NSW, Australia) in late 2016, with future commercialization of the device exclusively licensed to Intellectual Ventures (Bellvue, WA, USA). Patents for the technology have been filed in Australia, Europe, China, and the United States.

“Existing methods of spinal fusion use rod or cage systems that require screws to be drilled into the spine and a painful bone graft harvested, which is the material used to form the bridge and obtain the fusion between the vertebrae in the spine,” said device inventor Prof. Bill Walsh, MD, director of surgical and orthopedic laboratories at UNSW. “These systems are very costly, difficult and time consuming to implant and they also have variable rates of fusion success. Existing methods rely on the bone to make its way right across the vertebrae and it can take up to a year to find out if the surgery has been a success.”

“New technologies such as the Thru-Fuze are of paramount importance, as surgeons strive to deliver better patient outcomes with less invasive and more effective implant and prostheses options,” said neurosurgeon Ralph Mobbs, MD, who will lead the human trials. “The potential of the device is significant.”

Related Links:

University of New South Wales 
Intellectual Ventures


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
Plasma Freezer
iBF125-GX

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.