We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




3D Printing Supports Accurate Radiation Therapy Delivery

By HospiMedica International staff writers
Posted on 08 Jul 2015
Print article
Image: Example of bolus printed to conform to the nose of a phantom (Photo courtesy of Stony Brook Medicine).
Image: Example of bolus printed to conform to the nose of a phantom (Photo courtesy of Stony Brook Medicine).
A new study demonstrates how an inexpensive three dimensional (3-D) printer can be used to manufacture a patient-specific bolus for external beam therapy.

Researchers at Stony Brook Medicine (NY, USA) conducted a project to design and print a bolus using a treatment planning system and an inexpensive (USD 3,000) 3-D printer. The bolus is a device used in radiation therapy (RT) placed directly on the patient’s skin, and is intended to shape the desired RT dose to surface anatomy, thus conforming and containing the planning target volume (PTV) dose while delivering minimal radiation to adjacent underlying critical structures and normal tissues.

The researchers began the design process using a phantom as the test subject. After a computerized tomography (CT) scan was acquired, the data was exported to the Varian (Palo Alto, CA, USA) Eclipse treatment planning system. Once a satisfactory bolus design was determined, the structure set was exported to 3DSlicer, a 3-D modeling software that is maintained as open source. The stereolithography (STL) files were interpreted by printer software, and instructions were sent to an Airwolf (Costa Mesa, CA, USA) 3-D printer.

The researchers tested different materials—including acrylonitrile butadiene styrene and polylactic acid—as the substrate. Dose plane comparisons were conducted for each material using the phantom model and photographic film to verify accurate treatment planning. They were also able to verify accurate treatment planning using gamma analysis, and found that with gamma criteria of 5% dose difference and 3 mm distance-to-agreement (DTA) leeway, they achieved 95% points passing. The study was published in the May-June 2015 issue of the Journal of Applied Clinical Medical Physics (JACMP).

“We are confident that we can accurately model this printing material in our treatment planning system for all energies in photon and electron beams,” concluded lead author Sarah Burleso, PhD, and colleagues of the department of radiation oncology. “In the event the patient cannot have bolus materials placed on their skin for molding, we can print a 3D positive mold of the patient’s treatment area, molding the bolus to the replica instead. This process of printing our own bolus streamlines patient care, minimizes patient involvement, and maintains quality treatments.”

Related Links:

Stony Brook Medicine
Varian
3DSlicer



Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
BiPAP Machine
Breath Smart Series
New
Surgical Booms
AIRport

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.