We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




POCT Device Monitors C-Reactive Protein Levels Associated with Inflammation in Real Time

By HospiMedica International staff writers
Posted on 27 Aug 2024
Print article
Image: Schematic illustration of the developed sensor obtained by combining the microfluidic device with a smartphone-based potentiostat (Photo courtesy of ACS Sensors (2024). DOI: 10.1021/acssensors.4c00249)
Image: Schematic illustration of the developed sensor obtained by combining the microfluidic device with a smartphone-based potentiostat (Photo courtesy of ACS Sensors (2024). DOI: 10.1021/acssensors.4c00249)

Inflammation, a natural immune response, increases blood flow and improves cellular defense against diseases and infections. Rapid detection of inflammation is critical for effective treatment, creating the need for quick tests for inflammatory biomarkers like C-reactive protein (CRP). Produced in the liver, CRP is released into the bloodstream as part of the immune response and acts as a marker of inflammation and infection. It has been used historically to diagnose inflammation, but its broader potential as a biomarker for various diseases is a relatively recent development. Monitoring CRP levels can help diagnose severe conditions such as trauma, sepsis, ischemic necrosis, and malignancies. Although it is an acute phase reactant, tracking its levels over time is necessary to assess the effectiveness of treatments. Despite advancements in medical diagnostics, current methods to measure CRP levels lack the speed and immediacy needed for optimal care.

Now, researchers from the Institute of Physical Chemistry (ICHF) at the Polish Academy of Sciences (Warsaw, Poland) have developed a novel point-of-care device that measures CRP levels quickly and accurately, enhancing the speed and cost-effectiveness of analyses. This device, the size of a credit card, integrates electrochemical biosensors with near-field communication (NFC) technology within a microfluidic system. It requires only a small sample placed on a microfluidic plate with a tiny electrode. The sample moves through the device via capillary action, eliminating the need for external pumps and allowing automatic flow.

The device performs measurements electrochemically using a portable potentiostat. CRP detection occurs on specially designed electrodes within the microfluidic channels. These electrodes are coated with anti-CRP nanobodies—small antibody fragments that offer high specificity and stability under various conditions, making them ideal for detecting even low concentrations of antigens. The use of nanobodies enhances the sensitivity of the measurements, providing a balance between analytical accuracy and quick analysis times.

Results are displayed on Android smartphones, allowing real-time data collection and analysis. This biosensor captures and quantifies CRP as effectively as traditional, more expensive methods like ELISA tests. Offering greater sensitivity and stability, the device enables real-time measurements that greatly expand its utility in clinical settings. It provides a user-friendly, rapid, and affordable diagnostic tool that facilitates immediate treatment decisions, thus improving patient outcomes. This development marks a significant advance towards modern, personalized healthcare, allowing for quicker diagnoses and better monitoring of treatment efficacy.

“The proposed method was applied to the detection of CRP in whole human blood obtained from anonymous donors,” said Professor Martin Jönsson-Niedziółka who led the study. “The experimental results showed that the NFC-based system integrated with the flow-through microfluidic device can correctly quantify CRP in clinically relevant biological samples without the need for pretreatment procedures and could therefore be used for the assessment of inflammation, infections caused by bacteria or viruses, and monitor for increased risk of heart disease.”

Related Links:
ICHF 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Patient Warming Blanket
Patient Warming Blanket
New
Multi-Parameter Patient Monitor
S90

Print article

Channels

Surgical Techniques

view channel
Image: The Trilogy Valve with locator technology is the only TAVI system approved for aortic regurgitation (Photo courtesy of JenaValve)

New Transcatheter Valve Found Safe and Effective for Treating Aortic Regurgitation

Aortic regurgitation is a condition in which the aortic valve does not close properly, allowing blood to flow backward into the left ventricle. This results in decreased blood flow from the heart to the... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.