We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




New Testing Strips to Make Rapid Antigen Testing as Powerful as PCR Testing

By HospiMedica International staff writers
Posted on 11 Mar 2024
Print article
Image: New test strips raise the game in gene-based diagnostics (Photo courtesy of 123RF)
Image: New test strips raise the game in gene-based diagnostics (Photo courtesy of 123RF)

During the onset of the pandemic, individuals experiencing symptoms had to endure lengthy queues for lab-based PCR testing and then wait around two days for the results, to confirm if they were infected with the COVID-19 virus. This process was not only inconvenient but also involved complex and costly logistics, contributing to testing delays and increasing the risk of spreading the disease. Now, a newly developed biosensing technology enables the creation of gene test strips that can match the quality of traditional lab-based tests.

The new technology developed by a team of biomedical engineers at UNSW Sydney (Sydney, Australia) offers test strips that are as accurate as lab-based PCR tests, with the added advantage of quick, on-site disease detection. Described by the researchers as having “PCR in your pocket,” this advancement holds potential for broad applications in biomedical and environmental diagnostics across various sectors, including food, agriculture, and biosafety management. The technology allows for the detection of specific gene sequences at room temperature, using test strips that resemble the familiar RAT Covid test, potentially eliminating the need for long queues at PCR testing centers and drastically reducing costs to a few dollars per test. The test strips could be instrumental in rapidly responding to new pathogens, identifying areas with high antibiotic resistance, or in conservation efforts for endangered species.

The process of achieving PCR-level accuracy with these new test strips involves the creation of minuscule DNA nano-circles, each containing a fragment of the target DNA, such as the COVID virus. These nano-circles, approximately 2 nanometres in size, are then combined with CRISPR/Cas proteins, which are programmed to interact specifically with the target pathogen's DNA. When these proteins encounter the target DNA, they cause the DNA nano-circles to linearize, creating an abundance of 'fake targets.' This method triggers a molecular chain reaction, resulting in a flood of these fake targets that are easily detectable by the test strips, even with minimal presence of the original gene target.

This technology has been demonstrated to accurately detect COVID-19 virus and Helicobacter bacteria, which are responsible for stomach ulcers. Potential applications of this biosensing method extend beyond health diagnostics to include biosecurity (detecting invasive marine species), environmental science (tracking threatened species through DNA testing of environmental samples), and even cancer diagnosis, as demonstrated by the team's successful detection of cancer mutations in clinical patient samples.

“We think we created a new benchmark in biosensing – our gene-based tests will be able to be performed anywhere, anytime, by virtually anyone,” said study author Dr. Fei Deng.

Related Links:
UNSW Sydney

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
New
Video Uretero-Renoscope
Olympus URF-V3/V3R
New
Mobile Cart
MS550

Print article

Channels

Surgical Techniques

view channel
Image: The Trilogy Valve with locator technology is the only TAVI system approved for aortic regurgitation (Photo courtesy of JenaValve)

New Transcatheter Valve Found Safe and Effective for Treating Aortic Regurgitation

Aortic regurgitation is a condition in which the aortic valve does not close properly, allowing blood to flow backward into the left ventricle. This results in decreased blood flow from the heart to the... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.