We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Breakthrough in Diagnostic Technology Could Make On-The-Spot Testing Widely Accessible

By HospiMedica International staff writers
Posted on 01 Dec 2023
Print article
Image: Made-to-order diagnostic tests may soon be on the horizon (Photo courtesy of McGill University)
Image: Made-to-order diagnostic tests may soon be on the horizon (Photo courtesy of McGill University)

Home testing gained significant importance during the COVID-19 pandemic, yet the availability of rapid tests is limited, and most of them can only drive one liquid across the strip, leading to continued reliance on centralized laboratory diagnostics. Now, a significant advancement has been achieved in diagnostic technology with the development of a 'lab on a chip' that can be created through 3D printing in just half an hour. This innovation holds the potential to make rapid, on-site testing widely accessible.

As part of a recent study, researchers at McGill University (Montreal, QC, Canada) have pioneered the development of capillaric chips, which essentially serve as miniaturized laboratories. In contrast to other computer microprocessors, these chips are designed for single use and do not need an external power source; they operate efficiently using just a paper strip. Their functionality is based on capillary action, the natural process that enables liquid to spontaneously move into an absorbent material, like a paper towel absorbing a spill on a table. Remarkably, these chips can be tailored through 3D printing for a variety of tests, including the quantification of COVID-19 antibodies.

This advancement brings the concept of 3D-printed home diagnostics closer to practical application, though challenges like obtaining regulatory approvals and securing the necessary testing materials still exist. The research team is committed to enhancing the accessibility of this technology, focusing on adapting it for use with more affordable 3D printers. innovation aims to accelerate diagnostic processes, improve patient care, and usher in a new era of convenient and accessible testing options.

“Traditional diagnostics require peripherals, while ours can circumvent them. Our diagnostics are a bit what the cell phone was to traditional desktop computers that required a separate monitor, keyboard and power supply to operate,” explained Prof. David Juncker, Chair of the Department of Biomedical Engineering at McGill and senior author on the study. “This advancement has the capacity to empower individuals, researchers, and industries to explore new possibilities and applications in a more cost-effective and user-friendly manner. This innovation also holds the potential to eventually empower health professionals with the ability to rapidly create tailored solutions for specific needs right at the point-of-care.”

Related Links:
McGill University

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
New
Phototherapy Eye Protector
EyeMax2
New
Plasma Freezer
iBF125-GX

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.