We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Robotic Device Helps Stroke Survivors Recover Movement

By HospiMedica International staff writers
Posted on 22 Jun 2017
A new study describes how robotic-assisted rehabilitation therapy can assess muscle activity and movement dysfunction in stroke survivors, helping to improve their mobility.

Developed by researchers at Ulsan National Institute of Science and Technology (UNIST; Republic of Korea), Korea Advanced Institute of Science and Technology (KAIST; Daejeon, Republic of Korea) and other institutions, the rehabilitation robotic system measures forearm prono-supination, wrist flexion-extension, and radial-ulnar deviation (collectively known as the three degree-of-freedom (3DOF) impedance in just minutes. More...
The system uses the distal internal model based impedance control (dIMBIC)-based method, which accurately characterizes the 3DOF forearm and wrist impedance, including inertia, damping, and stiffness.

The accuracy and reliability of the system were experimentally validated using a robot with substantial nonlinear joint friction. The 3DOF human forearm and wrist impedance of eight healthy subjects was reliably characterized, and its linear behavior helped verify the dIMBIC-based method. The researchers suggest that dIMBIC 3DOF impedance estimation can promote motor control studies and complement the diagnosis of altered wrist and forearm resistance post-stroke by providing objective impedance estimates, including cross-coupled terms. The study was published in the May 2017 issue of IEEE Transactions on Neural Systems and Rehabilitation Engineering.

“The dIMBIC-based method can be used to assist in the quantitative and objective evaluation of neurological disorders, like stroke,” said senior author Professor Sang Hoon Kang, PhD, of the UNIST department of system design and control engineering, robotics, and rehabilitation engineering laboratory. “Findings from this study will open a new chapter in robot-assisted rehabilitation in the workplace accident rehabilitation hospitals, as well as in nursing homes and assisted living facilities.”

Human upper limb movement has been studied in detail, with the basic movements defined as roll – a rotational movement; yaw – a sideways movement in a horizontal plane; and pitch – an up and down movement in vertical plane. The human upper limb has seven degrees of freedom - three in the shoulder, one in the elbow, and another three in wrist.

Related Links:
Ulsan National Institute of Science and Technology
Korea Advanced Institute of Science and Technology

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Adjustable Mobile Barrier
M-458
Bipolar Coagulation Generator
Aesculap
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The novel approach combining MRI, fluid dynamics, and custom algorithms predicts brain cancer recurrence sites (photo courtesy of AdobeStock)

Novel Method Uses Interstitial Fluid Flow to Predict Where Brain Tumor Can Grow Next

Glioblastoma is one of the most aggressive brain cancers, with patients surviving on average only 15 months after diagnosis. Surgery and radiation can temporarily control the tumor, but the disease almost... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.