We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Next Gen Energy-Based Surgical Robots to Perform Operations without Touching Human Tissues

By HospiMedica International staff writers
Posted on 09 Jun 2023
Print article
Image: WPI researcher Loris Fichera has received a grant to enable surgical robots to treat disease by focusing energy on tissues (Photo courtesy of WPI)
Image: WPI researcher Loris Fichera has received a grant to enable surgical robots to treat disease by focusing energy on tissues (Photo courtesy of WPI)

Current surgical tools that utilize concentrated energy, such as lasers, radiofrequency, or ultrasound probes, operate by heating and destroying tissue during surgical procedures. Now, a new generation of energy-based surgical robots will be able to better understand and monitor the effects of heat on body tissues, enabling surgeons to perform minimally invasive surgeries with greater precision and without harming healthy tissue.

Worcester Polytechnic Institute (WPI, Worcester, MA, USA) researcher Loris Fichera has been awarded a USD 599,663 grant by the National Science Foundation (NSF, Alexandria, VA, USA) for a five-year project that aims to create a new category of surgical robots. These robots will be capable of treating diseases by delivering concentrated energy, such as light, without cutting or touching human tissues. The grant will support the exploration of integrating lasers, radiofrequency, and ultrasonic probes into surgical robots. Moreover, the project will incorporate Fichera's research into experimental devices currently under development at WPI, specifically designed for vocal cord and brain surgeries.

Building on Fichera's prior work on a robotic device for vocal fold surgery, this project will consolidate his cross-disciplinary expertise in robotics and the effects of focused energy on human tissue. Fichera will create a technique known as "virtual palpation" to enhance a surgical robot's perception. This method uses low-intensity energy pulses to create a map of a particular body area and determine the precise amount of focused energy a surgeon needs to apply. This improved perception will be used by Fichera to incorporate better control and automation into surgical robots, including a handheld laser device being developed to vaporize tumors embedded in a patient's vocal folds. Furthermore, his approach will be applied to models created for a minimally invasive robotic system that utilizes ultrasound to eliminate brain tumors.

“Robotic systems that use focused energy have the potential to transform surgery from procedures that use mechanical forces to cut and stretch tissue into something that no longer involves blood and incisions,” Fichera said. “With a new theory of how robots can interact with their surroundings, we will empower the next generation of surgical roboticists to improve human health.”

Related Links:
WPI

Gold Member
12-Channel ECG
CM1200B
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Pneumatic Stool
Avante 5-Leg Pneumatic Stool
New
Mattress Replacement System
Carilex DualPlus

Print article

Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.