We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Microscale Device Helps Keep Implantable Catheters Clear

By HospiMedica International staff writers
Posted on 14 Jun 2017
Print article
Image: A new microscale device helps keep catheters clear (Photo courtesy of H Lee/ Purdue).
Image: A new microscale device helps keep catheters clear (Photo courtesy of H Lee/ Purdue).
A new self-clearing technology could provide patients with neurological and other disorders reliable implantable catheters that could obviate additional surgery to replace failing devices.

Developed by researchers at Purdue University (Lafayette, IN, USA), the technology involves microscale devices with tiny magnetic elements that are located on a thin film that can be assembled into existing catheters. The micromechanical devices are subsequently activated by external magnetic forces in order to remove various biomaterials that foul the catheter. By using a time-varying magnetic field, changing its magnitude, or turning it on and off, dynamic movement and mechanical vibration are created at the pore to remove the obstructive biomaterials.

The magnetic approach generates a large amount of force, and can be done without an integrated circuit or power source, making it much simpler to implement and reducing the burden of hermetic packaging for the implantation process. Mechanical evaluations, including post-release deflection and static and dynamic responses of the device have thus far been tested in chronic shunt systems used for the treatment of hydrocephalus, which requires constant diversion of excess cerebrospinal fluid (CSF) from the brain.

“When a catheter is implanted, the body’s natural reaction is to protect itself against the foreign material by forming a sheath around it. Biofouling materials including bacteria, blood, and inflammatory cells, and other tissue quickly cover the device, often blocking the catheter’s inlet pores, leading to premature device failure,” said biomedical engineer Hyowon Lee, PhD, who developed the technology. “Approximately 40% of shunt systems fail within one year of implantation, and 85% fail within 10 years, mostly due to catheter obstruction.”

Hydrocephalus can cause an enlarged head in children and cause many other life-altering physical, behavioral, and cognitive symptoms in children and adults alike. Over one million people in the United States alone suffer from hydrocephalus, and one to two newborns develop the disorder every 1,000 births. Patients can also acquire hydrocephalus later on in life due to a traumatic brain injury (TBI) or hemorrhagic stroke. The shunt systems used to reduce CSF have a high fail rate due to biofouling, and replacing the failed catheter usually requires neurosurgery, with increased risk of infection and a huge economic, physical, and emotional burden for patients and their caretakers.

Related Links:
Purdue University

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Medical-Grade POC Terminal
POC-821
New
Hospital Data Analytics Software
OR Companion

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.