We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Nanosized Implantable Sensor to Advance Treatment for Spinal Cord Neurological Disorders and Injury

By HospiMedica International staff writers
Posted on 15 Jul 2024
Print article
Image: The sensor can record the activity of spinal cord neurons in a freely moving animal model (Photo courtesy of Jeff Fitlow/Rice University)
Image: The sensor can record the activity of spinal cord neurons in a freely moving animal model (Photo courtesy of Jeff Fitlow/Rice University)

Implantable technologies have significantly advanced our understanding and ability to modify brain neuron activity; however, studying neurons within the spinal cord during active movement has been more challenging. This difficulty arises because the spinal cord is highly mobile, shifting position whenever a person turns their head or bends over, as a result of which the spinal neurons are also moving. During such movements, rigid sensors implanted in the spinal cord can disturb or even damage the fragile tissue. Gaining a deeper understanding of how spinal neurons process sensations and control movement is crucial for developing more effective treatments for spinal cord diseases and injuries. Now, researchers have developed a tiny sensor called spinalNET which records the electrical activity of spinal neurons without interfering with normal activity. This capability marks a significant initial step toward creating potential treatments for millions affected by spinal cord diseases.

In their research, neuroengineers at Rice University (Houston, TX, USA) utilized spinalNET to observe neuronal activity within the spinal cord of freely moving mice over extended periods and with high resolution, successfully monitoring the same neurons for several days. Notably, spinalNET is more than a hundred times thinner than a human hair, making it exceptionally soft and flexible—comparable in softness to the neural tissue itself. This softness provides the necessary stability and biocompatibility to safely monitor spinal neurons as the spinal cord moves. With spinalNET, researchers can capture clear, low-noise signals from hundreds of neurons.

The spinal cord is integral to movement control and other essential functions. The ability to record spinal neuron activity with precise spatial and temporal resolution during natural motion opens up new possibilities for understanding the underlying mechanisms. Through the use of spinalNET, researchers discovered that neurons in the central pattern generator—a neural circuit capable of producing rhythmic motor patterns like walking without specific timing cues—are involved in functions beyond mere rhythmic movement. Looking ahead, the researchers aim to delve deeper into the complexities of spinal neuron function, exploring how these neurons differentiate between reflexive motions—such as reactions to sudden stimuli—and voluntary actions.

“Up until now, the spinal cord has been more or less a black box,” said Lan Luan, an associate professor of electrical and computer engineering and a corresponding author on the study. “In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury.”

Related Links:
Rice University

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Mammography Analytics Platform
Unifi Analytics Software
New
Respiratory Gas Humidifier
prisma VENT AQUA

Print article
Radcal

Channels

Surgical Techniques

view channel
Image: Anovo robotic surgical platform is the world\'s first single port robotics platform approved for ventral hernia repairs in the US (Photo courtesy of Momentis Surgical)

Surgical Platform with Miniature Humanoid-Shaped Robotic Arms Provides Human Level Dexterity

A robotic surgical platform that mimics the natural movements of surgeons, utilizing shoulder, elbow, and wrist joints, revolutionizes their ability to replicate complete freedom of movement within the abdomen.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.