We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Nurse Tracking System Improves Hospital Workflow

By HospiMedica International staff writers
Posted on 03 Jan 2018
Print article
Image: An NFER system allows researchers to track nurses\' movements in real time (Photo courtesy of Jung Hyup Kim/ MU).
Image: An NFER system allows researchers to track nurses\' movements in real time (Photo courtesy of Jung Hyup Kim/ MU).
An innovative system uses a combination of manual observation and non-intrusive tracking sensors to track intensive care unit (ICU) nurses in real time.

Developed at the University of Missouri (MU; Columbia, USA), the new near field electromagnetic ranging (NFER) system uses a tracking device pinned to ICU nurses to provide a more accurate measure of how much time they spend on various duties throughout their day. With the aid of 16 routers set up throughout the ICU to track the devices, researchers viewed each individual nurses' movements in real time on system monitors. The health care workers are represented as dots overlaid on a floor plan that represent their movement as they perform their duties.

The NFER system also allows researchers to observe if nurses provide patient care or are inputting data during their time spent in each room; they can pinpoint if nurses were at a room's computer terminal or at bedside, and measure the time spent doing each accordingly. By using these measurements and flow patterns, managers and supervisors can help plan nurses' shifts more efficiently, and designers and architects can use the information to design more efficient hospital units, according to the researchers. The study was presented at the annual Institute of Industrial and Systems Engineers (IISE) conference, held during May 2017 in Pittsburg (PA, USA).

“The nurses in an ICU confront heavy daily workloads and face difficulties in managing multiple stressors from their routine work. They're multitaskers, doing many things simultaneously,” said lead author Jung Hyup Kim, PhD, of the Industrial and Manufacturing Systems Engineering Department. “For example, while talking with the patient and getting vital signs, they also are charting in the electronic medical record system. We wanted to find ways to streamline their jobs, making them more efficient.”

NFER employs the near-field properties of radio waves as a real time location system (RTLS), which employs transmitter tags and one or more receiving units. Operating within a half-wavelength of a receiver, the transmitter tags use relatively low frequencies to achieve significant ranging. The low-frequency, multipath-resistant characteristics of NFER make it well suited for tracking in dense metallic locations, such as typical office and industrial environments. Depending on the choice of frequency, NFER has a range resolution of 30 cm and ranges up to 300 meters.

Related Links:
University of Missouri

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
New
Silver Member
Advanced 12-Lead Electrocardiograph with Printer
NECG SE-1200 Pro
New
LED Examination Lamp
Clarity 50 LED

Print article

Channels

Critical Care

view channel
Image: The AI-powered algorithm offers quick, no-contact screenings for high blood pressure and diabetes (Photo courtesy of 123RF)

AI-Powered Algorithm Offers Quick, Contactless Blood Pressure and Diabetes Screening

A newly developed system that combines high-speed video with an artificial intelligence (AI)-powered algorithm may provide a quick, non-contact method for screening high blood pressure and Type 1 or Type... Read more

Surgical Techniques

view channel
Image: Catheters coated with the new material showed a significant reduction in clotting on the device surface (Photo courtesy of UBC Faculty of Medicine)

Newly Developed Coating Makes Medical Devices Clot-Free

Thrombosis, or the formation of blood clots, presents a significant challenge for devices that come into contact with blood. Unlike natural blood vessels, these devices can activate specific proteins in... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.