We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Optimized Gold Nanoparticles to Improve Drug Delivery, Cancer Therapy and Imaging

By HospiMedica International staff writers
Posted on 04 Jun 2025

Health care professionals utilize gold nanoparticles for a variety of medical purposes, including diagnostic imaging and cancer treatment. More...

Gold is an ideal material for these applications due to its biocompatibility, stability, and visibility in imaging tests. However, despite the wide use of gold nanoparticles in medicine, there is limited understanding of how their size influences their performance. L-cysteine, an amino acid crucial in many biological functions, can prevent gold nanoparticles from aggregating, which is essential for ensuring the success of medical treatments. By forming a strong bond with gold, L-cysteine facilitates the attachment of nanoparticles to specific targets, such as cancer cells. A new study aimed at exploring the relationship between the size of gold nanoparticles and their interaction with L-cysteine found that smaller nanoparticles tend to exhibit the best performance.

Researchers at Western University (London, ON, Canada) collaborated with the Canadian Light Source at the University of Saskatchewan (Saskatoon, SK, Canada) to investigate how the size of gold nanoparticles affects their interaction with L-cysteine. Using synchrotron light along with other advanced techniques, the team found that smaller gold nanoparticles (5 nanometers) formed stronger bonds with L-cysteine compared to larger nanoparticles (10, 15, and 20 nanometers). For context, a human hair is approximately 100,000 nanometers wide.

The findings, published in the journal Particle & Particle Systems Characterization, also revealed that the smallest gold nanoparticles were less likely to clump together when L-cysteine was present. Clumping can impair the effectiveness, stability, and safety of nanoparticles. The researchers believe that these insights could help optimize the size of gold nanoparticles, thereby enhancing drug delivery, improving cancer treatment, and refining imaging techniques.

“It is important to know if the (gold) particle stays the same size, because each size has specific properties and you design the particle in this way, and then don't want it to change in the human body,” said Yolanda Hedberg, a professor of chemistry at Western University. “When we understand exactly how the size is affecting the reaction with the environment, we can design the particle size in a way that we make the nanomedicine as effective as possible.”


Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Trocar
TAN RoTaLock Trocar
New
Shoulder System
Identity Shoulder System
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The milli-spinner can shrink blood clots without rupturing them (Photo courtesy of Andrew Brodhead/Stanford)

New Technology More Than Doubles Success Rate for Blood Clot Removal

In cases of ischemic stroke, where a blood clot obstructs oxygen supply to the brain, time is critical. The faster the clot is removed and blood flow restored, the more brain tissue can be saved, improving... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: A research collaboration aims to further advance findings in human genomics research in cardiovascular diseases (Photo courtesy of 123RF)

Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies

A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.