We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Machine Learning Detects Cardiovascular Diseases Before Symptoms Appear

By HospiMedica International staff writers
Posted on 14 Aug 2024
Print article
Image: Changes in the electric fields can be precisely analyzed in the simulations (Photo courtesy of TU Graz)
Image: Changes in the electric fields can be precisely analyzed in the simulations (Photo courtesy of TU Graz)

Cardiovascular diseases rank among the leading causes of mortality globally, often remaining undetected until symptoms manifest and the condition becomes advanced, necessitating surgical intervention over medication. Researchers have devised a method to enhance the early detection of these diseases, bypassing expensive diagnostics like MRI or CT, through the use of a digital twin of the patient, which also allows for more in-depth disease investigation. This innovation promises to ease the strain on patients, doctors, and medical facilities alike.

Developed by the team at Graz University of Technology (TU Graz, Styria, Austria), this new approach leverages the principle that any disease altering cardiovascular mechanics also modifies the externally applied electrical field in specific ways, affecting conditions such as arteriosclerosis, aortic dissection, aneurysms, and heart valve defects. Researchers can utilize standard electrical, bio-impedance, or optical signals—from ECGs, PPGs, or smartwatches—which are analyzed through a self-developed machine learning model. This model detects potential diseases from the signals and assesses the likelihood of their presence, enabling earlier intervention when medication might still be viable over surgery.

The machine learning model's training incorporated real clinical bio-impedance data and simulation values from cardiovascular system models. With numerous cardiovascular parameters and extensive simulation needs for statistically significant results, machine learning enables the achievement of results with more than 90% accuracy swiftly. Another benefit of this machine learning analysis is its capacity to identify changes in ECG data that are not easily visible to even seasoned physicians.

For instance, this technology can assess the extent of arterial stiffening, often a precursor to aortic dissection, thus serving as an early warning sign. Once a significant change is detected, the diagnostic data can be used to construct a multi-physical simulation model or a digital twin, which not only predicts the disease's progression but also facilitates deeper analysis by medical professionals. The researchers are actively refining this technology in collaboration with healthcare industry partners to enhance the accuracy of their algorithms and further tailor them for clinical application.

“There is a lot of information that can be collected from outside the body with little effort,” said Vahid Badeli from the Institute of Fundamentals and Theory in Electrical Engineering at TU Graz. “So far, it has been difficult to find out exactly what this information means. But with our computer models and the help of machine learning, we can understand it better and find correlations.”

Related Links:
TU Graz

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
Mobile Power Procedure Chair
LeMans P360

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.