We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Cutting-Edge 3D-Printed Microneedle Technology Revolutionizes Drug Delivery and Diagnostics

By HospiMedica International staff writers
Posted on 08 Aug 2024
Print article
Image: 3D-printed hollow microneedles enable remote-controlled sensing and drug delivery (Photo courtesy of Advanced Healthcare Materials)
Image: 3D-printed hollow microneedles enable remote-controlled sensing and drug delivery (Photo courtesy of Advanced Healthcare Materials)

A groundbreaking system that integrates remote health monitoring and drug delivery using 3D-printed hollow microneedles is set to revolutionize healthcare, particularly benefiting those in underserved or remote areas.

Developed by researchers at the University of Victoria (Victoria, BC, Canada) and the Terasaki Institute for Biomedical Innovation (TIBI, Los Angeles, CA, USA), this integrated theranostic microneedle array (MNA) system marks a significant step forward in personalized medicine. The system's 3D-printed hollow microneedles enable painless and minimally invasive access to interstitial fluid, transforming both drug delivery and diagnostics. It includes an array of colorimetric sensors capable of quantitatively measuring vital health indicators such as pH, glucose, and lactate levels, while also featuring a remotely-triggered mechanism for on-demand drug delivery. Notably, the system employs an ultrasonic atomizer that simplifies the drug delivery process. This innovation, detailed in a publication in Advanced Healthcare Materials, facilitates rapid, pumpless, point-of-care drug administration, enhancing the system's portability and simplicity.

The system has extensive capabilities, demonstrating the ability to monitor pH levels from 3 to 8, glucose up to 16 mm, and lactate up to 1.6 mm. These metrics are essential for tracking various health conditions. A key aspect of this technology is its smartphone application, which acts as an interface for both sensing and drug delivery operations. This user-friendly platform allows patients and healthcare providers to easily manage and interpret data and oversee the drug delivery process. The broader implications of this technology are profound. It offers a means to extend remote health monitoring and treatment capabilities, potentially overcoming geographical and socioeconomic barriers in healthcare access. This democratization of healthcare resources could lead to timelier medical interventions, ongoing health condition monitoring, and genuinely personalized care, regardless of a patient's location or financial status.

The potential of this system to improve the management of chronic diseases, which often require sustained treatment regimens, is particularly promising. Its capacity for on-demand medication delivery and non-invasive health monitoring could significantly enhance patient outcomes and quality of life. As global healthcare systems face challenges related to equity and accessibility, this technology presents a vision for a future where high-quality healthcare is not confined by geographical or economic limitations. The system represents a substantial advancement in merging remote monitoring, on-demand drug delivery, and accessible user interfaces, paving the way toward more equitable health outcomes and resource distribution. The developers of this innovative system have effectively tackled existing challenges in drug delivery and health monitoring, setting the stage for ongoing innovations in personalized, accessible healthcare for all.

"This innovative approach confronts drug delivery challenges, particularly in managing chronic diseases requiring long-term treatment, while also offering avenues for non-invasive health monitoring through microneedle-based sensors," said Dr. Ali Khademhosseini, CEO of TIBI and a renowned expert in bioengineering.

Related Links:
University of Victoria
TIBI

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Medical-Grade POC Terminal
POC-821
New
Mini C-arm Imaging System
Fluoroscan InSight FD

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.