We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

AI Brain-Age Estimation Technology Uses EEG Scans to Screen for Degenerative Diseases

By HospiMedica International staff writers
Posted on 29 Apr 2024
Print article
Image: Postdoctoral researcher Yongtaek Oh wearing the EEG device (Photo courtesy of Drexel University)
Image: Postdoctoral researcher Yongtaek Oh wearing the EEG device (Photo courtesy of Drexel University)

As individuals age, so do their brains. Premature aging of the brain can lead to age-related conditions such as mild cognitive impairment, dementia, or Parkinson's disease. The ability to determine "brain age" easily could allow for early intervention in cases of premature brain aging, potentially averting severe health issues. Researchers have now developed an artificial intelligence (AI) technique capable of estimating a person's brain age using electroencephalogram (EEG) brain scans, potentially making early and regular screening for degenerative brain diseases more accessible.

Researchers from Drexel University (Philadelphia, PA, USA) employed a type of AI known as machine learning to gauge an individual's brain age in a manner similar to estimating a person's age based on their physical appearance. This measure is viewed as an indicator of general brain health. If an individual's brain appears younger compared to that of other healthy individuals of the same age, it typically raises no concerns. However, if a brain appears older than those of similarly aged healthy peers, it might indicate premature brain aging—or a "brain-age gap." Such gaps, the researchers note, can result from diseases, exposure to toxins, poor nutrition, or injuries, and they may increase susceptibility to age-related neurological disorders. Despite the importance of brain-age estimates as health markers, they have not been extensively utilized in healthcare settings.

Typically, machine-learning algorithms can learn from MRI images of healthy brains to identify features that predict an individual's brain age. By inputting numerous MRI images of healthy brains into a machine-learning algorithm along with the chronological ages of those brains, the algorithm learns to estimate the age of an individual’s brain based on their MRI. Adapting this approach, the researchers developed a method using EEGs instead of MRIs. An EEG, which records brain waves, is a more affordable and less invasive test than an MRI, requiring only that the patient wear a headset for a few minutes. Thus, a machine-learning program that can determine brain age from EEG scans could provide a more accessible tool for monitoring brain health, the researchers suggest.

“Brain MRIs are expensive and, until now, brain-age estimation has been done only in neuroscience research laboratories,” said John Kounios, PhD, a professor at Drexel University who led the team. “But my colleagues and I have developed a machine-learning technology to estimate a person’s brain age using a low-cost EEG system.”

“It can be used as a relatively inexpensive way to screen large numbers of people for vulnerability to age-related. And because of its low cost, a person can be screened at regular intervals to check for changes over time,” Kounios said. “This can help to test the effectiveness of medications and other interventions. And healthy people could use this technique to test the effects of lifestyle changes as part of an overall strategy for optimizing brain performance.”

Related Links:
Drexel University

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Pneumatic Stool
Avante 5-Leg Pneumatic Stool
New
Digital Radiographic System
OMNERA 300M

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.