We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Decontamination Robot Sanitizes Rooms in Five Minutes

By HospiMedica International staff writers
Posted on 24 Mar 2020
Print article
Image: The LightStrike Germ-Zapping Robot (Photo courtesy of Xenex)
Image: The LightStrike Germ-Zapping Robot (Photo courtesy of Xenex)
A new germ-zapping robot emits broad-spectrum ultraviolet (UV) light that disrupts the cell walls of microorganisms and causes irreparable damage.

The Xenex (San Antonio, TX, USA) LightStrike Germ-Zapping Robot uses a bulb filled with xenon gas to create intense germicidal UV light with an extensive range that includes both UV-B (280-315nm) and UV-C (200-280nm), and at an intensity thousands of times higher than mercury bulbs. The continuous UV light reduces microbial load in as little as five minutes, including methicillin-resistant Staphylococcus aureus (MRSA), Clostridium difficile, vancomycin-resistant Enterococcus (VRE), and other organisms. The robot has also been shown to reduce surgical site infection (SSI) rates.

Features include an impact resistant shell and four castors for portability; a telescopic mechanism to raise the xenon-filled bulb from its protective casing before use; a triple sensor motion detection cone to identify people are in the room, enhancing patient and staff safety; a simple user interface with auto-updating software for new features; cloud-based reporting over cellular or Wi-Fi networks; and extreme durability and reliability. After use, the room will remain disinfected until new pathogens enter the room from a visitor, patient, care provider, or the air handling system.

“A mercury light bulb is about the average intensity of a fluorescent light. Ours is 400 to 1,400 times more intense, depending on where the disinfecting spectrum is. The answer is, intensity makes all the difference,” said Morris Miller, CEO of Xenex. “It’s the difference between a hose and a power washer. A hose will put out a lot more water; but a power washer, at 18,000 pounds per square inch, will clean your sidewalk in the way that a hose won’t.”

Increasing evidence confirms that Clostridium difficile, MRSA, VRE, Acinetobacter baumannii, and influenza are transmitted via environmental surfaces, and that only 50% of environmental surfaces in a typical operating room or patient room may be effectively disinfected. The current patient’s risk of contracting a hospital acquired infection (HAI) from contaminated surfaces increases 100% when the previous room occupant had been diagnosed with an infection.

Related Links:
Xenex

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Digital Radiography System
DigiEye 680
New
Bioengineered Collagen Implant
Tapestry Biointegrative Implant

Print article

Channels

Surgical Techniques

view channel
Image: Graphical abstract; Surgical field during endomyocardial biopsy and fluoroscopic images (Photo courtesy of Heart Rhythm, DOI: 10.1016/j.hrthm.2024.10.069)

Novel Method Combining Heart Biopsy and Device Implantation Reduces Complications Risk

Endomyocardial biopsy (EMB) is a crucial diagnostic tool for identifying various cardiac conditions; however, it carries a risk of complications due to its invasive nature. New research has introduced... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.