We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Novel Pacemaker Matches Cardiac Rhythm to Breathing

By HospiMedica International staff writers
Posted on 28 Nov 2019
Print article
Image: Professor Alain Nogaret (L) who designed the pacemaker that resynchronizes respiration and cardiac rhythms (Photo courtesy of the University of Bath)
Image: Professor Alain Nogaret (L) who designed the pacemaker that resynchronizes respiration and cardiac rhythms (Photo courtesy of the University of Bath)
A new study describes how a respiratory modulated heart rate (RMH) pacemaker can radically improve the efficiency at which the heart supplies blood to the body.

Researchers at the University of Bristol (United Kingdom), the University of Auckland (New Zealand), the University of Bath (United Kingdom), and other institutions induced heart failure (HF) in Wistar rats by ligation of their left anterior descending coronary artery. After two weeks, the rats were randomly assigned to remain unpaced, to monotonic pacing, and to RMH pacing, with both paced groups guided to the same average heart rate. Cardiac function was assessed non‐invasively using echocardiography before and after two weeks of daily pacing, at a time when pacing was turned off.

The results revealed that RMH increased cardiac output by about 20% compared to monotonic pacing. This improvement in cardiac output was associated with an increase in stroke volume and improvement in circumferential strain. Increases in contractility and coronary blood flow were seen during variable pacing to mimic RMH. As a result, in rats with left ventricular dysfunction, chronic RMH pacing improved cardiac function through improvements in systolic function. And as the improvements were made with pacing switched off, the researchers suggest that RMH pacing causes reverse‐remodeling. The study was published on November 14, 2019, in Journal of Physiology.

“By managing to recreate neurons on a chip, we have developed a pacemaker that restores natural heart rate variability, instead of simply working at a steady rate,” said co-senior author Professor Alain Nogaret, PhD, of the University of Bath department of physics, who led the design of the nonlinear “smart” bionic pacemaker. “That’s the major advantage of this work, and why we hope to be able to treat heart failure in patients in the years to come.”

“Within two weeks there was a twenty percent increase in blood pumped by the heart, which was not the case when we used conventional pacemakers,” said lead author Erin O’Callaghan, PhD, of the University of Bristol school of biomedical sciences. “The cardiac output as well as the stroke volume shot up in the rats who had a pacemaker set to respiratory sinus arrhythmia, compared to those using the other monotonic pacing.”

Most automatic pacemakers generate a metronome-like rhythm when the patient is at rest, irrespective of the body’s other operations. But normal heartbeat is a dynamic phenomenon; with every intake of breath, it can be felt to speed up, only to slow down with exhalation, a phenomenon called respiratory sinus arrhythmia. The new RMH pacemaker adapts the rate of impulse generation to breathing, allowing more blood to be pushed out when more blood is received by the heart during inhalation, and less when the heart is being pushed in by the chest collapse that accompanies exhalation.

Related Links:
University of Bristol
University of Auckland
University of Bath


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Pneumatic Stool
Avante 5-Leg Pneumatic Stool
New
Blanket Warming Cabinet
EC250

Print article

Channels

Surgical Techniques

view channel
Image: The DigiLoupes Headset (Photo courtesy of Ocutrx Technologies)

Innovative Headset Featuring Advanced AR, XR and Pancake Lens Technology to Transform Surgery

A cutting-edge headset incorporating advanced augmented reality (AR), XR, and state-of-the-art lens technologies has been developed to replace traditional "chin-on-chest" medical loupes, offering a significant... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.