We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Xenon Gas May Mitigate Blast-Induced Brain Injury

By HospiMedica International staff writers
Posted on 08 Mar 2018
Print article
Image: A new study suggests xenon gas may protect the brain from blast trauma (Photo courtesy of ICL).
Image: A new study suggests xenon gas may protect the brain from blast trauma (Photo courtesy of ICL).
A new study demonstrates that xenon treatment after blast traumatic brain injury (bTBI) reduces initial injury and prevents subsequent injury development.

Researchers at Imperial College London (ICL; United Kingdom), the Royal Centre for Defence Medicine (RCDM; Birmingham, United Kingdom), and other institutions conducted a murine study that examined slices of mouse brain tissue after exposing them to blast shockwaves that emulated those produced by improvised explosive devices (IEDs). Using a dye that highlights damaged brain cells, the researchers were able to monitor injury development up to three days after exposure.

They then compared brain slices of mice given xenon treatment starting one hour after exposure to slices of mice exposed to blast, but without xenon treatment, assessing injury development at 24, 48, and 72 hours using propidium iodide fluorescence. They found that slices treated with xenon suffered significantly less injury than the untreated control slices. The blast-injured slices treated with xenon were not significantly different to uninjured slices at 24 hours and 72 hours after injury, indicating that xenon gas prevented injury from developing. The study was published on February 8, 2018, in the Journal of Neurotrauma.

“One of the most insidious aspects of TBI in general, and it is believed bTBI also, is that the damage can continue to grow long after the initial injury. The secondary injury can be many times worse than the primary injury, so our goal is to stop the damage from spreading as early as possible,” said lead author Rita Campos-Pires, PhD, of ICL. “Xenon could be delivered easily by inhalation shortly after brain injury with relatively simple equipment. In addition to its potential for arresting injury development, xenon has an additional advantage of simultaneously providing analgesia.”

Xenon is a nonflammable inert gas that has been used as a general anesthetic since the 1950s. It is a pleiotropic drug known to act via a number of targets implicated in secondary injury development, including inhibition of N-methyl-D-aspartate receptors, activation of potassium channels, and anti-apoptotic action. Xenon has a number of unique advantages, including not being metabolized and rapidly crossing the blood–brain barrier, facilitating a rapid onset and offset of action, within minutes.

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Single-Use Instrumentation
FASTPAK
New
Phlebotomy Cart
TR-65J38

Print article

Channels

Surgical Techniques

view channel
Image: The first-ever surgery performed utilizing the MARS platform and Intuitive Da Vinci SP single-port robot (Photo courtesy of Levita Magnetics)

Revolutionary Robotic Surgery Combines Dual-System Technologies for Groundbreaking Prostate Procedure

In a pioneering advancement for robotic-assisted surgery, surgeons at UT Southwestern Medical Center (Dallas, TX, USA) have successfully performed the first-ever surgery utilizing two distinct systems... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.